系所：資工系
 科目：計算機概論（1）

1．For a direct－mapped cache design with a 32－bit address，the following bits of the address are used to access the cache．

Tag	Index	Byte offset
$31-16$	$15-4$	$3-0$

（a）How many entries does the whole cache have？（5\％）
（b）In the whole cache，how many bits are used to store tag information？（5\％）
2．What were the two major motivations for virtual memory？（5\％）
（a）Remove the programming burdens of a small，limited amount of main memory．
（b）Enhance task－level and process－level parallelism．
（c）Allow efficient and safe sharing of memory among multiple programs．
（d）Reduce the miss rate of a cache．
3．For an 8 －bit CPU，what is two＇s complement representation of -4 ？（ 5% ）
4．Let processes P_{1}, P_{2}, P_{3} and P_{4} arrive at time 0 ．The length of CPU burst time of $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and P_{4} is $6,8,7$ and 3 respectively．Assuming that the shortest－job－first（SJF）scheduling algorithm is adopted to schedule these processes．What is the average waiting time？（5\％）

5．Processes P_{1} and P_{2} are periodic tasks．P_{1} has a period of 50 and a CPU burst time of 25 ．On the other hand， P_{2} has a period of 80 and a CPU burst time of 20 ．What is the total CPU utilization of the two processes？（5\％）

6．Suppose that a process is executing＂counter $=$ coutner +1 ＂while another process is executing concurrently and independently＂counter＝counter－ 2 ＂，where the counter is a variable shared between the two processes and is accessed only by these two statements once．Given that the initial value of counter is 5 before execution，please list all possile values of counter after both processes finish．（5\％）（提示：共有三種情況，全對才給分，任一個錯誤零分）

7．How many processes are created by the following program？（5\％）

```
#include <stdio.h>
#include <unistd.h>
int main()
{
    int i;
    for (i = 0; i < 4; i++)
        fork();
    return 0;
}
```

系所：資工系
科目：計算機概論（1）

8．For the following program，what the output will be at lines C and P ？（ 10% ）

```
#include <pthread.h>
#include <stdio.h>
int value = 100;
void *runner(void *param); /* the thread */
int main(int argc, char *argv[])
{
    pid t pid;
    pthread t tid;
    pthread attr t attr;
    pid = fork();
    if (pid == 0) {
        pthread attr init(&attr);
        pthread create(&tid,&attr,runner,NULL);
        pthread join(tid,NULL);
        printf("CHILD: value = %d",value); /* LINE C */
    }
    else if (pid > 0) {
        wait(NULL);
        printf("PARENT: value = %d",value); /* LINE P */
    }
}
void *runner(void *param) {
    value = 50;
    pthread exit(0);
}
```

9．In how many ways can one travel in the xy－plane from $(-1,5)$ to $(-5,-2)$ if each move is one of the following three types（ 10% ）
W：$(x, y) \rightarrow(x-1, y)$ ，
$S:(x, y) \rightarrow(x, y-1)$ ，and
SW：$(x, y) \rightarrow(x-1, y-1)$ ？

10．Let F_{m} denote the nth Fibonacci number，and $F_{n}=F_{n-1}+F_{n-2}$ ．Find the smallest Fibonacci number（ >1 ），which is a perfect square．（ 10% ）

11．Let $\mathbf{u}=(1,1,1)$ and $\mathbf{a}=(0,2,-1)$ ．
（a）Find the vector component of \mathbf{u} along \mathbf{a} ．（5\％）
（b）Find the vector component of \mathbf{u} orthogonal to a．（5\％）
12．What is the cost of minimum cost spanning tree of the given graph？（10\％）

13．Ackerman＇s function $A(m, n)$ is defined as below：

$$
\mathrm{A}(\mathrm{~m}, \mathrm{n})=\left\{\begin{array}{lr}
n+1 & \text { if } m=0 \\
A(m-1,1) & \text { if } n=0 \\
A(m-1, A(m, n-1)) & \text { otherwise }
\end{array}\right.
$$

（a）What is the value of $\mathrm{A}(2,1) ?(5 \%)$
（b）Write a recursive program to calculate $\mathrm{A}(\mathrm{m}, \mathrm{n}) .(5 \%)$

