

國立雲林科技大學 111 學年度

科目: 工程數學(2)

系所:電子系

(15%) A differential equation is as follows, 1.

$$x^3y^4 + (x^4y^3 + 2y)\frac{dy}{dx} = 0$$

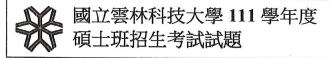
- (a) Find its solution.
- (b) Verify your solution in (a).
- (15%) A 2nd-order differential equation is as follows, 2.

$$y'' + 9y' + 20y = -36e^{-t}, y(0) = 0, y'(0) = 0$$

- (a) (05%) Find the general solution of the homogeneous equation.
- (b) (05%) Find a particular solution of the non-homogeneous equation.
- (c) (05%) Find the final particular solution of this non-homogeneous equation.
- (20%) A differential equation system is as follows, 3.

$$\mathbf{y}' = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 4 \\ 2 \end{bmatrix} e^{2t}, y(0) = 0$$

- (a) (05%) Find the Laplace transform of e^{2t} .
- (b) (10%) Find the solution of this differential equation system using Laplace transform.
- (c) (05%) Determine the stability of this system and explain your reason.
- (15%) Perform the indicated operation, give that: 4.

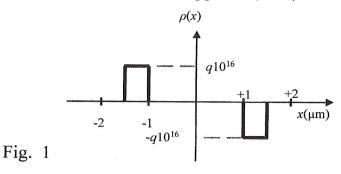

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \end{bmatrix} \quad C = \begin{bmatrix} -1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 2 & 1 \end{bmatrix}$$

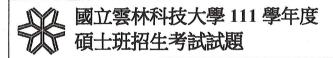
- (a) $(A+B)^{T}$ (b) (2A-B)(C+D)(c) If 2X+3(A-B)=0, Find X
- (10%) Solve the system using either Gaussian elimination with back-substitution. 5.

$$0x + 4y - 2z = 2$$
$$6x - 2y + z = 29$$
$$4x + 8y - 4z = 24$$

- (15%) If $\vec{A} = \vec{i} 3\vec{j} + 2\vec{k}$, $\vec{B} = 3\vec{i} 2\vec{j} + 3\vec{k}$, Find (a) $\vec{A} \cdot \vec{B}$ (b) $\vec{A} \times \vec{B}$ (c) The projection of \bar{A} on \bar{B}
- (10%) Find the eigenvalues and eigenvectors of A. 7.

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{bmatrix}$$




系所:電子系

科目:半導體元件

$$h = 6.63 \times 10^{-34} \text{ J-s}, k = 8.62 \times 10^{-5} \text{ eV/K}, q = 1.6 \times 10^{-19} \text{ C}, \ln 10 \approx 2.3, \varepsilon_{\text{Si}} = 12 \times 8.85 \times 10^{-14} \text{ F/cm}, n_{\text{i}} = 10^{10} \text{ cm}^{-3}$$

- 1. Explain the following terms: (a) Lattice vibration (b) Vacancy (10%)
- 2. What kind of impurity atom can be added to make the following intrinsic materials to become *n*-type semiconductors? (a) Si (b) GaAs (10%)
- 3. GaAs is more suited than Si for use in optical devices. Please explain why. (10%)
- 4. Consider the Fermi-Dirac probability function $f_F(E)$, and E_F is the Fermi energy. Assume there are two temperatures $T_1 = 0$ K and $T_2 > 0$ K.
 - (a) Plot the curve of $f_F(E)$ vs. E for T_1 . (5%)
 - (b) Plot the curve of $f_F(E)$ vs. E for T_2 . (5%)
- 5. The Hall effect can be used to distinguish whether a semiconductor is *n*-type or *p*-type. Please describe its principle. (10%)
- 6. Explain or define the following terms:
 - (a) Miller indices (5%)
 - (b) Low injection level (5%)
 - (c) Strong inversion condition of MOS structure (5%)
- 7. Explain the dominant current is electron or hole current of p^+n , n^+p , Np and Pn junctions, where N and P mean wider energy gap and + means high doping concentration. (15%)
- 8. A silicon *pin* junction has the doping profile shown in Fig. 1. The "i" corresponds to an ideal intrinsic region in which there is no impurity doping concentration. A reverse-bias voltage is applied to the *pin* junction so that the total depletion width extends from $-1.5 \mu m$ to $+1.5 \mu m$ as shown in follow. (a) Calculate the magnitude of the electric field at x = 0. (b) Sketch the electric field through the *pin* junction. (c) Calculate the reverse bias that must be applied. (20%)

系所:電子系

科目:基本程式設計

- 1. () In C language, the semicolon (;) is used to mark the (A)start (B)end (C)separator (D)nothing of a statement. (10 pts)
- 2. () What type of loop always executes at least once? (A)for (B)while (C)switch/case (D) do/while. (10 pts)
- 3. () What is the value of sum after the following code has executed? (A)55 (B)45 (C) 10 (D) none of these. (10 pts)

- 4. () How to do an infinite loop? (A) int n=1; while(n!= 0) ++n; (B)while('indefinite'); (C) while(1); (D) while(0). (10 pts)
- 5. Change this program so that it uses "switch...case" command instead of "if-else". (10 pts)

if (month = = 4
$$\parallel$$
 month = = 6 \parallel month = = 9 \parallel month = = 11)
printf("Month has 30 days.\n");

else if (month = = 1 \parallel month = = 3 \parallel month = = 5 \parallel month = = 7 \parallel month = = 8 \parallel month = = 10 \parallel month = = 12) printf("Month has 31 days.\n");

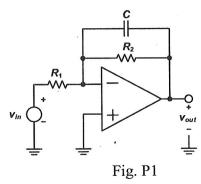
else if (month = = 2)

printf("Month has 28 or 29 days.\n");

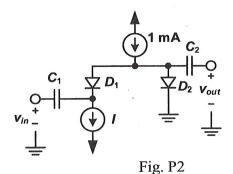
else

printf("Don't know that month.\n");

- 6. Write a program to do bubble sort to sort n numbers in an array Arr. You can use any programming language or pseudo language. What is the time complexity of bubble sort? (12.5 pts)
- 7. Write a program to do matrix multiplication for a r1*c1 matrix and a c1*c2 matrix, resulting in a r1*c2 matrix. What is the time complexity of your algorithm? (12.5 pts)
- 8. Write a program to find the index of a number X in a sorted array of length n. What is the time complexity of your algorithm? (12.5 pts)
- 9. Write a program to find the greatest common divisor of two positive integers a and b. (12.5 pts)

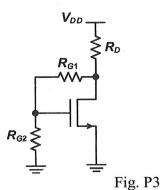

國立雲林科技大學 111 學年度 碩士班招生考試試題

系所:電子系


科目:電子學

本試題共五題,每題得分如各題中所示,共計 100 分,請依題號作答並將答案寫在答案卷上,違者不予計分。

1. (10 \triangle) As shown in Fig. P1, a first-order low-pass active filter performs a low-pass STC function. Derive the transfer function and show the DC gain is $(-R_2/R_1)$ and the 3 dB frequency $\omega_o = 1/CR_2$.



- 2. In the capacitor coupled attenuator circuit shown in Fig P2, I is a DC current that varies from 0 mA to 1 mA, D1 and D2 are diodes with n = 1, and C_1 and C_2 are large coupling capacitors. For very small input signals,
 - (a) (10 %) find the value of the ratio v_{out} / v_{in} for I equal to 10 μ A.
 - (b) (5 %) find the value of the ratio v_{out} / v_{in} for I equal to 100 μA.
 - (c) (5 %) find the value of the ratio v_{out} / v_{in} for I equal to 500 μ A.

- 3. As Fig. P3 shows, using $V_{DD} = 6$ V with an NMOS for which $V_t = 1.2$ V, k_n ' W/L = 2.0 mA/V² and $\lambda = 0$, provide a design which biases the transistor at $I_D = 2$ mA, with V_{DS} large enough to allow saturation operation for a 2 V negative signal swing at the drain. Use a 26 M Ω resistor as the R_{G2} , then:
 - (a) (10 分) find the value of R_D .
 - (b) (10 分) find the value of R_{G1} .

$$(\sqrt{2} = 1.414, \sqrt{3} = 1.732, \sqrt{5} = 2.24)$$

國立雲林科技大學 111 學年度 碩士班招生考試試題

系所:電子系

科目:電子學

4. (20 Ω) The transistors operate in the saturation region. $R_{D1} = R_{D2}$ and $M_1 = M_2$. $V_{in} = V_{in1} - V_{in2}$. $V_{out} = V_{out2} - V_{out1}$. (a) Calculate the differential trans-conductance? (b) Neglect the channel-length modulation and body effect of MOS transistors. Calculate the low-frequency differential small-signal voltage gain. Some related parameters are: $R_{D1,2} = 2 \text{ k}\Omega$, $\mu_n C_{ox} = 100 \times 10^{-6} \text{ A/V}_2$, $(\frac{w}{L})_{M1,M2} = 10$, and $I_{SS} = 1$ mA.

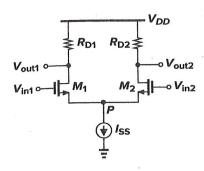
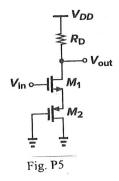



Fig. P4

5. $(30\,\%)$ Both MOS transistors operate in the saturation region. Assuming neither transistor suffers from the body effect, Calculate the (a) low-frequency voltage gain of the amplifier, and (b) output resistance, and (c) 3dB bandwidth of the amplifier if $C_{out}=20\times10^{-15}~F$, while ignoring the parasitic capacitances of both transistors. Some related parameter values are: $R_D=10~k\Omega$, $g_{m1}=1.0\times10^{-3}~A/V$, $g_{m2}=0.5\times10^{-3}~A/V$, $\lambda_1=0.1~V^{-1}$, $\lambda_2=0~V^{-1}$, and $I_{D1,2}=1~mA$.

國立雲林科技大學 111 學年度

科目:電磁學

系所:電子系

Useful physical constants: $\varepsilon_0 \approx \frac{10^{-9}}{36\pi}$ (F/m); $\mu_0 = 4\pi \times 10^{-7}$ (H/m)

- 1. (a) $\mathbf{A} = 3\mathbf{a}_x + 4\mathbf{a}_z$, $\mathbf{B} = 5\mathbf{a}_y$; (b) $\mathbf{A} = \mathbf{a}_\rho + 2\mathbf{a}_\phi + 4\mathbf{a}_z$, $\mathbf{B} = 2\mathbf{a}_\rho + 8\mathbf{a}_z$; 求 A×B \circ (10%)
- 2. 電通量密度 $\mathbf{D} = 20\mathbf{a}_{\rho} + 10\mathbf{a}_{\phi} \, \mathrm{C/m^2}$,請計算通過以下曲面的電通量, 曲面: $\rho = 6 \text{ m}, 0 \le \varphi \le 90^{\circ},$ 與 $-1 \le z \le +1 \text{ m} \circ (10\%)$
- 3. 一個球體的電荷密度分布為 $\rho_v = \rho_a(r/a)$ 在 $0 \le r \le a$ 且 $\rho_v = 0$ 在 r> a. 請導出在所有空間 (r > 0) 的電通密度公式。(10%)
- 4. 在 z=1 cm , x-y 平面無限大平板的電荷密度為 $\rho_s=+100$ nC/m²,請 計算在z=0 位置有一接地的無限大金屬板,其感應電荷密度。(10%)
- 5. 請寫出 4 個 Maxwell's eq's 以及所代表的物理意義。 (10%)
- 6. 一個朝 +z 方向傳遞的波,其函數為 $A_0 \sin(10^8 t \frac{1}{2} z)$,求相速度(phase velocity),假設長度單位為公尺(m)。(10%)
- 7. 在 x-y 平面上有一無限延伸的電流平面,其電流密度為 K=6 a_y A/m, 請計算 H (3 m, 4 m, 5 m)。 (20%)
- 8. 假設磁場 $\mathbf{H} = 2xy^2 \, \mathbf{a}_z \, A/m$,請計算電流密度 $\mathbf{J} \, (2 \, m, 2 \, m, 3 \, m)$ 。 (20%)