

科目:工程數學(3)

1. (15%) Please solve for y=y(x).

(a) (5%)
$$y'' + 2y' + y = 0, y(0) = 4, y'(0) = -6$$

(b) (5%)
$$x^2y'' - 5xy' + 9y = 0$$

(c) (5%)
$$y + 5 = \ln(y')$$

- 2. (15%) The ODE equation: $(3x^2y + 6xy + \frac{y^2}{2})dx + (3x^2 + y)dy = 0$
 - (a) (5%) Verify the ODE is not exact.
 - (b) (5%) Find the integrating factor I(x,y).
 - (c) (5%) Find the solution of the ODE.
- 3. (10%) Given the equation $y'' 6y' + 9y = \frac{e^{3x}}{x^2}$ find the general solution.
- 4. (10%) If (a) $f(t) = (t + \frac{1}{2})^2$, Find L[f(t)], (b) $F(S) = \frac{1}{S(S^2 + 5)}$, Find $L^{-1}[F(S)]$.
- 5. (15%) Consider the equations

$$\begin{vmatrix} x & + & 2y & + & 3z & = & 4 \\ x & + & ky & + & 4z & = & 6 \\ x & + & 2y & + & (k+2)z & = & 6 \end{vmatrix}$$

where k is an arbitrary constant.

- (a) (5%) Find the reduced row echelon form (rref) of the augmented matrix of this system.
- (b) (5%) For which values of the constant k does this system have infinitely many solutions? In addition, find these infinitely many solutions.
- (c) (5%) For which values of the constant k does this system have no solution?
- 6. (20%) Consider the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ and a transformation $T(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$ from \mathcal{R}^3 to

 ${\mathcal R}$ in which the notation \cdot denotes the inner product.

- (a) (10%) Prove $T(\mathbf{x})$ is linear and find the transformation matrix of T.
- (b) (10%) Explain $T(\mathbf{x})$ is invertible and find its inverse transformation.
- 7. (15%) A data set has three points (x, y) = (0, 6), (1, 0), and (2, 0).
 - (a) (5%) Find the closest line y(x) = a + bx to these points.
 - (b) (5%) Find the closest quadratic function $y(x) = c + dx + ex^2$ to these points.
 - (c) (5%) Which function gives better data fitting? Explain your reason.

科目:半導體元件

1. Describe the energy band gap differences in the insulator, semiconductor, and metal materials. (15%)

- 2. Describe briefly the formation of the build-in potential in a p-n junction diode. (15%)
- 3. Describe the crystal structure of the poly-crystalline silicon. (20%)
- 4. Explain

(a) Low injection for pn junction	(5%)
(b) Zener breakdown	(5%)
(c) One-sided pn junction	(5%)
(d) Diffusion length	(5%)

- 5. Explain the reasons of the dominant current component are electron or hole current of p⁺n, n⁺p, Np and Pn junction, where + and N (or P) mean high doping concentration and wilder band gap material, respectively. (15%)
- 6. How to make metal/n-type (or p-type) semiconductor to be a Schottky Diode? (15%)

科目:計算機概論(1)

- 1. Convert the following hexadecimal representations of 2's complement binary numbers to decimal number. (10 points)
- (a) xF0
- (b) x7FF
- (c) x 16
- (d) x8000
- (e) x1
- 2. Without changing their values, convert the following 2's complement binary numbers into 8-bit 2's complement numbers. (10 points)
- (a) 1010
- (b) 011001
- (c) 11111111000
- (d) 01
- (e) 110
- 3. Implement a 4-to-1 mux using only 2-to-1 muxes making sure to properly connect all of the terminals. Remember that you will have 4 inputs, 2 control signals, and 1 output. Write out the truth table for this circuit. (10 points)
- 4. Given the following truth table, generate the gate-level logic circuit, using the Programmable Logic Array (PLA). Remember that this circuit have 3 inputs and 2 outputs. (20 points)

A	В	С	F ₀	\mathbf{F}_1
0	0	. 0	1	1
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	78	1
1	1	1	0	0

科目:計算機概論(1)

5. Give the definition of the von Neumann model of a computer. Describe a robot with the von Neumann model. (10 points)

- 6. Prove there are infinite prime numbers. (10 points)
- 7. Write an algorithm, with a positive input integer n, to list all prime numbers less than n. (10 points)
- 8. What is supervised learning in machine learning? Describe how a neural network does supervised learning. (10 points)
- 9. Describe three instructions of an assembly language that you know. Describe how an assembly language program is assembled into machine code. (10 points)

國立雲林科技大學 108 學年度 碩士班招生考試試顯

系所:電子系

科目:電子學

本試題共六題,每題得分如各題中所示,共計 100 分,請依題號作答並將答案寫在答案卷上,違者不予計分。

- 1. The amplifier in Fig. P1 is biased to operate at $I_D = 1$ mA and $g_m = 1$ mA/V.
 - (a) (10 分) find the midband gain when neglecting r_0 .
 - (b) (10 分) find the value of C_S that places f_L at 10 Hz.

Fig. P1

- 2. Consider the operational rectifier or superdiode circuit of Fig. P2, with $R=1 \text{ k}\Omega$. Assume that the op-amp is ideal and that its output saturates at $\pm 12 \text{ V}$. The diode has a 0.7 V drop at 1 mA current, and the voltage drop changes by 0.1 V per decade of current change. What are the voltages that result at the rectifier output V_{out} and at the output V_A of the op-amp A?
 - (a) (5 分) when $V_I = 10 \text{ mV}$
 - (b) (5 分) when $V_I = 1.0 \text{ V}$.
 - (c) (5 分) when $V_I = -1.0 \text{ V}$.

Fig. P2

- 3. Negative feedback having four basic topologies (Shunt-Series, Series-Series, Shunt-Shunt, and Series-Shunt) is to be used to modify the characteristics of a particular amplifier for various purpose. Identify the feedback topology to be used if:
 - (a) (5 分) Input resistance is to be lowered and output resistance raised.
 - (b) (5分) Both input and output resistance are to be raised.
 - (c) (5分) Both input and output resistance are to be lowered.

國立雲林科技大學 108 學年度

碩士班招生考試試題

系所:電子系

科目:電子學

4. $(20 \, \text{\frac{1}{12}})$ (a) If the op-amp is ideal except the voltage gain A=1200 V/V, calculate V_{out} . (b) If the op-amp is ideal except A=1200 V/V and input offset voltage $V_{os} = 20 \, \text{mV}$, calculate V_{out} .

Fig. P4

5. (10 \Re) The op-amp is ideal except its slew rate Slew Rate = $200 \, V/\mu s$. While $V_{in}(t) = V_1 \times \sin(\omega t)$, calculate the full-power bandwidth (a) if $V_1 = 1V$ and (b) if $V_1 = 10V$.

Fig. P5

- 6. (20 Ω) The input is a voltage step of 0.1V arriving at t=0. C=1 μ F and R=1 μ C. Vout(t = 0) = 0V. Note that the output can swing from -15V to +15V. Calculate $V_{out}(t = 100ms)$,
 - (a) if the op-amp is ideal and
 - (b) if the op-amp is ideal except A=1000 V/V.

Fig. P6

國立雲林科技大學 108 學年度 碩士班招生考試試題

系所:電子系

科目:電磁學

Useful physical constants: $\varepsilon_0 \approx \frac{10^{-9}}{36\pi}$ (F/m); $\mu_0 = 4\pi \times 10^{-7}$ (H/m)

- 1. 電子的帶電量是(-1.6×10⁻¹⁹)庫侖,質量是(9.1×10⁻³¹)公斤。在某一個只利用均勻電場控制電子水平移動方向的裝置中,經測量得知單一電子在此均勻電場中的加速度為(8)公尺/秒²,正X軸方向。計算上述均勻電場的大小與方向。(10%)
- 2. 將一有串聯內阻的電池兩極接上 7 歐姆電阻,其電池端電壓為 2.8 伏特;若改接 17 歐姆的電阻,其電池端電壓變為 3.4 伏特。若再改接一37 歐姆的電阻,則此時流經電阻的電流為多少豪安培?(10%)
- 3. 某一各向同性且線性的介質, $\varepsilon_r = 10.0$,在其中測得電位場的分布為 $V(x,y,z) = 12 xz^2$ (V)。 請計算此介質內分布**的**電場 \mathbf{E} 、電極化強度 \mathbf{P} 、電通量密度 \mathbf{D} 、電極化率 χ_e 、與束縛電荷 ρ_b 。(15%)
- 4. 某一圓柱形介面,在 $ρ \le 2m$, $ε_{rl} = 2$,電場 $\mathbf{E}_1 = 3\mathbf{a}_ρ + 6\mathbf{a}_φ + 9\mathbf{a}_z$ (V/m)。 在 ρ > 2m, $ε_{r2} = 3$,求此區域之電場 \mathbf{E}_2 。(5%)
- 5. 請分別寫出積分形式與微分形式的 Maxwell's equations,並說明其物理意義。(10%)
- 6. 一電磁波的電場函數為 20 $\cos(2\pi \times 10^7 t 0.2\pi z)$ \mathbf{a}_x ,其中 \mathbf{a}_x 為單位向量,
 - (a) 求此電磁波的頻率;
 - (b)說明此電磁波的傳遞方向;
 - (c) 求此電磁波的傳遞速度。

(30%)

- 7. 在x-y 平面上有一環形導線,其電流I方向如箭頭所示,
 - (a) 請說明z軸上的點(0,0,h)其磁場方向;
 - (b) h = +5 cm 和 h = -5 cm 時,其磁場大小與方向有何差異? (20%)

