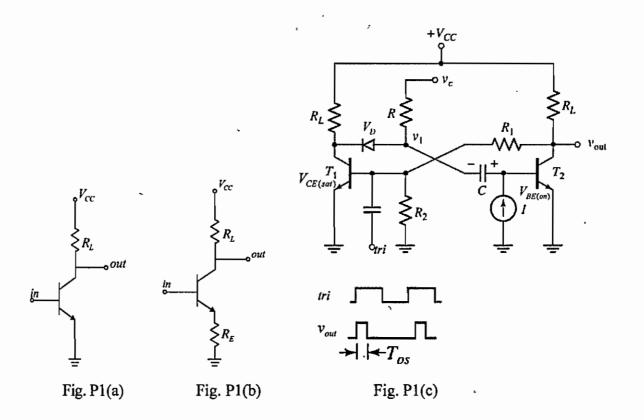
₩ 國 立 雲 林 科 技 大 學 96 學年度碩士班入學招生考試試題


系所:電子系 科目:電子學

1.(10%)(a) In the class-A power stage of Fig. P1(a). Please derive the equation of maximum power efficiency, $\eta = \frac{P_{ac}}{P_S}$, where P_S is the power delivered by the dc power and P_{ac} is the ac power that can be delivered to the load.

(5%)(b) In the class-A power stage of Fig. P1(b). What is the function of R_E and derive the equation of maximum power efficiency again.

(15%)(c)Please describe the behavior of circuit in Fig. P1(c), and find the T_{OS} .

(Hint: Initial condition is T_2 on and T_1 off)

₩ 國立雲林科技大學 96學年度碩士班入學招生考試試題

系所:電子系

科目:電子學

 $R_D = 1k, R_F = 10k,$ 2.(10%)Consider amplifier shown the in Fig.P2, where $gm1 = gm2 = 0.01, C_A = C_X = C_Y = 100 fF$. Neglecting all other capacitances, compute the phase margin of the circuit.

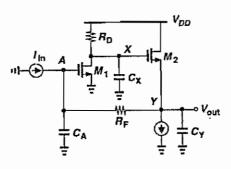


Fig. P2

3.(10%)Derive the transfer function of circuit shown in Fig. P3, roughly sketch its frequency response, and find the resonant frequency, ω_0 , and quality factor, Q.

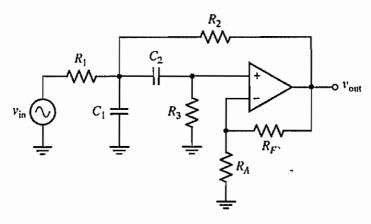
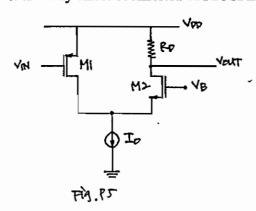


Fig. P3

立雲林科技大學

系所:電子系

科目:電子學


4. $\mu_n C_{ox} = 60 \mu A/V^2$, $\lambda_n = 0.1 V^{-1}$, $(\frac{W}{L})_{M1} = 10$, $V_{DD} = 5 V$, $R_D = 100 k \Omega$, V_{tn} = 0.7V. The DC or bias voltage of the input is 1V. μ is the carrier mobility. C_{ox} is the gate-oxide capacitance. λ is the channel-length modulation coefficient. $(\frac{W}{I})$ is the aspect ratio of MOSFET. V_t is the threshold voltage.

(5%) (a) Calculate g_m. (transconductance)

(5%) (b) Calculate low-frequency small-signal voltage gain.

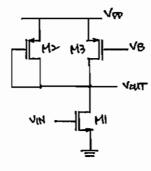
5. (20%) $\mu_n C_{ox} = 60 \mu A/V^2$, $\mu_p C_{ox} = 30 \mu A/V^2$, $\lambda_n = 0.5 V^{-1}$, $\lambda_p = 0.5 V^{-1}$, $(\frac{W}{L})_{M1} = 100$, $(\frac{W}{L})_{M2} = 12$, $\gamma_n = 0.4 V^{1/2}$, $|2\phi_F| = 0.7 V$, $V_{IN} = 4 V$, $V_B = 1.5 V$, $V_{DD} = 5 V$, $R_D = 100k\Omega$, and $V_{tn_0} = \left|V_{tp_0}\right| = 0.7V$. The current source I_0 consumes a voltage legroom of 0.5V. Please calculate the low-frequency small-signal voltage gain. y is the body effect coefficient of MOSFET.

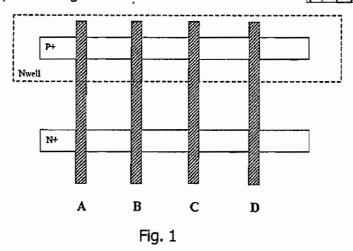
國立雲林科技大學 96學年度碩士班入學招生考試試題

系所:電子系

科目:電子學

6. (20%) $\mu_n C_{ox} = 60 \mu A/V^2$, $\mu_p C_{ox} = 30 \mu A/V^2$, $\lambda_n = 0 V^{-1}$, $\lambda_p = 0 V^{-1}$, $V_{IN} = 1.7 V$, $V_B = 3.3V$, $V_{OUT} = 3V$, $V_{DD} = 5V$, $(\frac{W}{L})_{M1} = 10$, $(\frac{W}{L})_{M2} = 2.4$, $(\frac{W}{L})_{M3} = 16$, $V_{m_0} = |V_{tp_0}| = 0.7V$. What is the low-frequency small-signal voltage gain of the amplifier?




Fig.Pb

系所:電子系

科目:積體電路設計

本試題共6題,第1題及第5題每題10分,其餘每題20分,共計100分,請依題號作答並將答案寫在答案卷上,違者不予計分。

1. On the layout diagram Fig. 1, indicate the metal connections required to create a complex CMOS logic gate implementing the function $F = \overline{AB + C + D}$.

2. For the following questions, choose the **best** response.

(20°pt)

- (I) The input to a VLSI block is 01110011. If the output is 10111001, then the block's function is: (a)Rotate Left (b) Rotate Right (c) Shift Left (d) Shift Right (e) Barrel Shift
- (II). If both a NAND gate and a NOR gate are made with ALL minimum size MOSFETs, which will have the faster rise time? (a) NAND (b) NOR (c) Same (d) Indeterminate
- (III). If both a NAND gate and a NOR gate are made with ALL minimum size MOSFETs, which will have the larger mid-point voltage for simultaneous switching?(a) NAND (b) NOR (c) Same (d) Indeterminate
- (IV) Compared to a ripple carry adder, the area of a carry look ahead adder is: (a) Larger (b) Smaller (c) Same (d)Indeterminate
- (V) If the spacing between NMOS and PMOS FETs in a output pad is decreased, the probability of latch-up will: (a) Increase (b)Decrease (c) No Change (d) Indeterminate
- 3. Sketch 2-input NOR gates built using: (a) clocked CMOS logic, (b) domino logic, (c) pseudo-NMOS logic, (d) CVSL logic (20pt)

₩ 國立雲林科技大學

96學年度碩士班入學招生考試試題

系所:電子系

科目:積體電路設計

4. Explain why NMOS pass **weak high** and **strong low**, and PMOS pass **weak low** and **strong high**. Use the circuits shown in Fig. 5-1 and Fig. 5-2 to help your answers. (20pt)

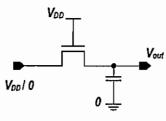


Fig. 5-1

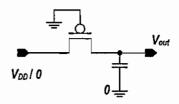
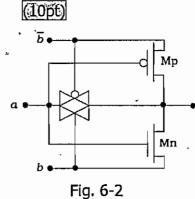



Fig. 5-2

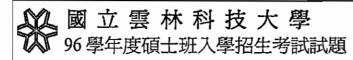

5. Show the Boolean function of Fig. 6-1 and Fig. 6-2.

Fig. 6-1

6. Explain following terms: (a) Moore's Law, (b) SoC, (c) Body Effect, (d) LDD MOSFET. (e) DRC, ERC, LVS. (20pt)

系所: 資工所、電子系

科目:線性代數

1. If $x_1, x_2, ..., x_n$ are numbers, then show by induction that

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ & & \dots & \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \prod_{i < j} (x_j - x_i),$$

the symbol on the right meaning that it is the product of all terms $x_j - x_i$ with i < j and i, j integers from 1 to n. (10%)

2. Determine the sign of the following permutations. At the same time, write the inverse of the permutation. (10%)

(a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix}$.

3. Compute the eigenvalues of the following matrix in complex numbers. (10%)

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

4. Let $X_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $X_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $X_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Please get an orthonormal base for $\{X_1, X_2, X_3\}$. (10%)

5. Let $A = \begin{bmatrix} 1 & 4 & -2 \\ 0 & 2 & 3 \\ 4 & -1 & 1 \end{bmatrix}$. Please get the adjoint of A (adjA). (Note that if A is a $n \times n$ square matrix, then $A \bullet adj A = adj A \bullet A = det A \bullet I_n$.) (10%)

.

6. Give 5 statements that are equivalent to a square $n \times n$ matrix being invertible. (10%)

₩ 図 立 雲 林 科 技 大 學 96 學年度碩士班入學招生考試試題

系所: 資工所、電子系

科目:線性代數

7. Let a transformation T

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 2x_2 - x_1 - 2x_3 \\ x_1 - x_2 \end{bmatrix}$$

- (a) (5%) Show that T is a linear transformation.
- (b) (5%) Find the transformation matrix of T with respect to the standard basis.
- (c) (10%) Find an orthonormal basis for the kernel of the matrix of T, ker(T). Give the orthogonal decomposition of the vector $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$ with respect to ker(T).
- 8. Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are linearly independent vectors. Show that \mathbf{u} , \mathbf{u} + \mathbf{v} , and \mathbf{u} + \mathbf{v} + \mathbf{w} are linearly independent. (10%)
- 9. Let T is a transformation from \mathbb{R}^2 to \mathbb{R}^2 and

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix} = \mathbf{A}\mathbf{x}$$

- (a) (5%) Find the inverse transformation of T.
- (b) (5%) Use the inverse transformation found in (a) to solve the system given by

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 where $\mathbf{b} = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$ and $\theta = \pi$.