図立雲林科技大學 95 學年度碩士班入學招生考試試題

系所:電子系 科目:電子學

- 1. The transfer function of filter circuit is given by $H(S) = \frac{20 \text{ S}}{S^2 + 20 \text{ S} + 10^4}$,
- (10%) (a). Find ω_0 , Q, and damping ratio.
- (10%) (b). Sketch the gain Bode plot with detailed calculation.

2.

- (3%)(a). In the Fig.1, find differential-mode gain, A_d , if $R_1 = R_1^*$, $R_2 = R_2^*$, $R_3 = R_3^*$
- (7%)(b). In the Fig.1, find v_o if $R_1 \neq R_1^*$, $R_2 \neq R_2^*$, $R_3 \neq R_3^*$.
- (7%)(c). In the Fig.1, explain that how to optimize common-mode rejection ratio if $R_1 \neq R_1^{\bullet}$, $R_2 \neq R_2^{\bullet}$, $R_3 \neq R_3^{\bullet}$ and R_3 is adjustable.

(3%)(d). In the Fig.2, find v_a .

- 3. A FET-based Colpitts oscillator is shown in Fig.3. The gate resistance is very large, C_G and C_S are very large coupling and bypass capacitors.
- (15%)(a) Find the oscillation frequency if the high-frequency mall signal model is used. (5%)(b) Find the started condition of oscillation.
- 4. A CMOS inverter is shown in Fig.4-1.

(4%)(a). The transfer curve of inverter is shown in Fig.4-2. Try to complete the Table 4-1.

		Operation region		Operation region
I	NMOS		PMOS	
П	NMOS		PMOS	
Ш	NMOS		PMOS	
IV	NMOS		PMOS	
V	NMOS		PMOS	

Table 4-1

(8%)(b). Assume
$$|V_{th}| = |V_{tp}| = 1V$$
, $K_n = 4K_p = 100 \frac{\mu A}{V}$ where V_{th} and V_{tp} are threshold voltage of NMOS and PMOS, $K_n = \frac{1}{2} \mu_n C_{OX} (\frac{W}{L})_n$ and $K_p = \frac{1}{2} \mu_p C_{OX} (\frac{W}{L})_p$. Try to find V_{th}, V_A, V_B .

₩ 國立雲林科技大學 95 學年度碩士班入學招生考試試題

系所:電子系

科目:電子學

(4%)(c). Apply a 1MHz square wave swept between 0V and 5V to Vin and find average power consumption at Vout.

(4%)(d). In most real case, why
$$(\frac{W}{L})_n \neq (\frac{W}{L})_p$$
?

5. A CMOS feedback amplifier is shown in Fig.5. If the DC input voltage is zero, please calculate the following parameters:

(14%)(a) The overall gain
$$\frac{v_o}{v_i}$$
.

(6%)(b) The output resistance.

Use
$$\mu_n C_{OX} = 60 \frac{\mu A}{V^2}$$
, $\mu_p C_{OX} = 30 \frac{\mu A}{V^2}$, $V_{in} = 0.8V$, $V_{ip} = -0.8V$, $\lambda = \frac{1}{V_A} = 0.03$. The dimensions of M1, M2, M6, M7, M8 are $\frac{W}{L} = \frac{40}{1}$ and M3, M4, M5 are $\frac{W}{L} = \frac{20}{1}$. $(\sqrt{480000} = 692.82 \text{ and } \sqrt{960000} = 979.8)$

國立雲林科技大學 95學年度碩士班入學招生考試試題

系所:電子系 科目:電子學

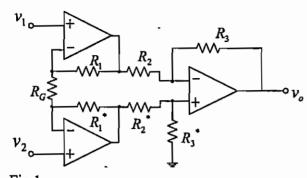


Fig.1

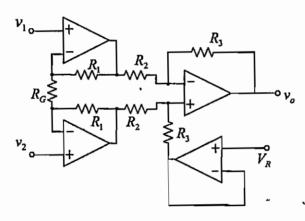


Fig.2

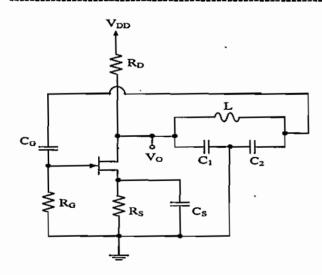


Fig.3

國立雲林科技大學 95學年度碩士班入學招生考試試題

系所:電子系

科目:電子學

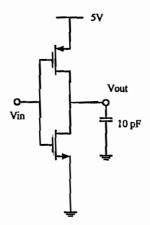


Fig. 4-1

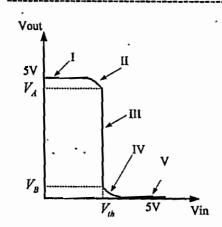


Fig. 4-2

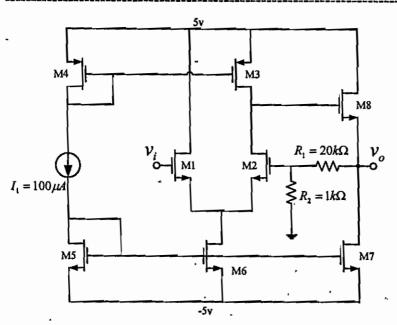
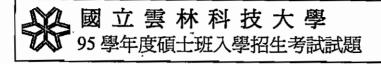



Fig. 5

系所:電子系

科目:積體電路設計

1. Given the 4-variable K-map as Fig. P1, circuits the 1's and write the minimized expression. (10%)

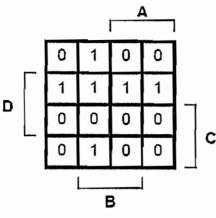


Fig. P1

2. (a) Using only one level of logic, draw the static CMOS circuit schematic for the function:

$$Z = [A(B+C) + DE + F]$$

Draw your circuit in such a way that the number of transistor drains at the output node is minimized. (10%)

- (b) What is the logic gate function in Fig. P2? (5%)
- (c) Draw the static CMOS circuit schematic for the logic gate in Fig. P2. (5%)

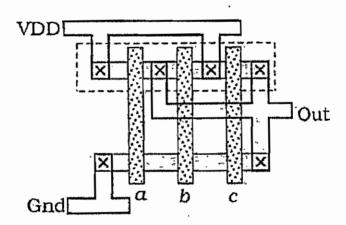


Fig. P2

圆立雲林科技大學 95 學年度碩士班入學招生考試試題

系所:電子系

科目:積體電路設計

- 3. A proposed edge-triggered D-type flip-flop is shown in Fig. P3. (The weak inverter has a weak PMOS and a weak NMOS.)
 - (a) Is this a rising-edge triggered or falling-edge triggered flip-flop? (5%)
 - (b) Is Z the true or the complement Q output? (5%)
 - (c) For the 4 possible combinations (current value of Z, next D to be stored), state what will happen at node X and node Y during the evaluate phase.(10%)

current Z	next D		node X and Y during the evaluate phase	
		۲.		

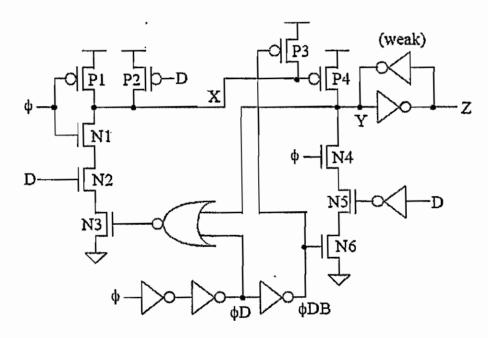


Fig. P3

₩ 國立雲林科技大學 95 學年度碩士班入學招生考試試題

系所:電子系

科目:積體電路設計

4. For the amplifier given in Fig. P4, what is the small-signal voltage gain? All transistors are biased in the saturation region. Neglect the channel-length modulation and body effect. (10%)

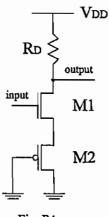


Fig. P4

5. An amplifier is shown in Fig. P5. The NMOS transistor is biased in the saturation region. Neglect the channel-length modulation effect. Find the transresistance gain $\frac{\mathbf{v}_{\text{out}}}{\mathbf{i}_{\text{in}}}$. (20%)

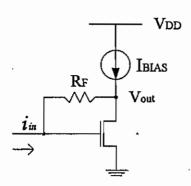


Fig. P5

6. For the circuit given in Fig. P6, M1 is an NMOS transistor and A is an operational amplifier. $V_{GS}=0.67V, \quad R1=10k\Omega \,, \quad R2=6k\Omega \,, \quad R3=2k\Omega \,. \, Please \, calculate \quad I_{DS} \quad of \, M1. \, (20\%)$

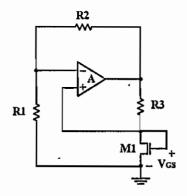


Fig. P6

₩ 國 立 雲 林 科 技 大 學 95 學年度碩士班入學招生考試試題

系所:資工所、電子系

科目:線性代數

- 1. Three vectors \vec{b} , \vec{v}_1 and \vec{v}_2 are in \mathbb{R}^3 . (10%)
 - (a) What's the condition that \vec{b} is called linear combination of the vectors \vec{v}_1 and \vec{v}_2 ? (5%)
 - (b) Is the vector $\begin{bmatrix} -3 & 0 & 3 \end{bmatrix}^T$ a linear combination of $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$ and $\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}^T$? (5%)
- 2. V_i are sets in the vectors space \mathbb{R}^3 . (10%)

$$V_1 = \{(x_1, x_2, x_3) \mid x_2 \ge 0\},$$

$$V_2 = \{(x_1, x_2, x_3) \mid x_1 = x_2 = 2x_3\},$$

- (a) State the requirements of a set can be a subspace. (5%)
- (b) Whether V_i are subspaces of the vectors space \mathbb{R}^3 . (5%)
- 3. Let T be a linear transformation form \mathbb{R}^2 to \mathbb{R}^2 that projects any vector orthogonally onto the line L spanned by the vector $\begin{bmatrix} 4 & 3 \end{bmatrix}^T$. (15%)
 - (a) Find the eigenvalues and their corresponding eigenvectors for T. (10%)
 - (b) By using the eigenvectors you found in (a) as the basis, find a transformation matrix A for T.(5%)
- 4. A linear system is as following: (15%)

$$A\vec{x} = \vec{b}$$
, where $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \\ 1 & 3 \\ 1 & -1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -2 \\ 0 \\ 0 \\ -2 \end{bmatrix}$

- (a) Find an orthonormal basis $\{\vec{u}_1, \vec{u}_2\}$ of im(A), where im(A) is the image of A. (5%)
- (b) To find the least-square solution \vec{x}^* of the system. (5%)
- (c) Graph the geometric relationship among $A\vec{x}^*$, im(A), and \vec{b} . (5%)

國立雲林科技大學 95學年度碩士班入學招生考試試題

系所:資工所、電子系

科目:線性代數

The color of light can be represented in a vector $\begin{bmatrix} R \\ G \\ R \end{bmatrix}$, where R = amount of red, G = amount

of green, and B = amount of blue. The human eye and the brain transform the incoming signal into the signal $\begin{bmatrix} I \\ L \\ S \end{bmatrix}$, where intensity $I = \frac{R+G+B}{3}$ (10%)

> long-wave signal L = R - Gshort-wave signal $S = B - \frac{R+G}{2}$.

- (a) Find the matrix P representing the transformation from $\begin{bmatrix} R \\ G \\ R \end{bmatrix}$ to $\begin{bmatrix} I \\ L \\ S \end{bmatrix}$. (5%)
- (b) Consider a pair of yellow sunglasses for water sports that cuts out all blue light and passes all red and green light. Find the 3×3 matrix A that represents the transformation incoming light undergoes as it passes through the sunglasses. (5%)
- Consider the linear transformation T(f) = f' + f'' from P_2 to P_2 , where P_2 is the set of all polynomials of degree ≤ 2 . Please find a 3 \times 3 matrix B for this linear transformation T. Note that f and f are the first order and second order derivatives of f, respectively. (10%)
- (10%)Find the derivative of the function 7.

$$f(x) = \det \begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 9 & 0 & 2 & 3 & 4 \\ 9 & 0 & 0 & 3 & 4 \\ x & 1 & 2 & 9 & 1 \\ 7 & 0 & 0 & 0 & 4 \end{bmatrix}.$$

Find an orthogonal matrix S and a diagonal matrix D such that $S^{l}AS = D$. (10%) 8.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Let L be a lower triangular 3×3 matrix with positive entries on the diagonal. Please find L

such that
$$A = LL^T$$
, where $A = \begin{bmatrix} 4 & -4 & 8 \\ -4 & 13 & 1 \\ 8 & 1 & 26 \end{bmatrix}$. (10%)