

科目:物理化學

- 1. 5.6 g of nitrogen occupies 22.8 dm³ at 350 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 26.5 kPa until its volume has increased by 3.5 dm³. (b) Calculate the work that would be done if the same expansion occurred reversibly. (16%)
- 2. Calculate the entropy change when 1.50 mol of gas with $C_{p,m} = 3.5R$ at 300 K and 1.50 bar is compressed to 420 K and 6.00 bar. (20%)
- 3. Calculate the change in the chemical potential of an ideal gas when it is expanded isothermally at a temperature of 365 K from a molar volume of 2.58 m³ to a molar volume of 12.64 m³. (14%)
- 4. It is found that the boiling point of a binary solution A and B with $x_A = 0.6218$ is 90° C. At this temperature the vapor pressure of pure A and B are 131.2 kPa and 52.14 kPa, respectively. (a) Is this solution ideal? (8%) (b) What is the initial composition of the vapor above the solution? (7%)
- 5. Write the cell reaction, calculate the standard potential and estimate if it is a spontaneous cell reaction under standard condition. (10%)

$$Ag(s)|AgNO_3||CuSO_4(aq)|Cu(s)$$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{e}= +0.34 \text{ V}$

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
 $E^{\theta} = +0.80 \text{ V}$

碩士班招生考試試題

系所:化材系

科目:物理化學

- 6. The rate constant for the first-order decomposition of N_2O_5 in the reaction $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ is $k_r = 3.38 \times 10^5 \text{ s}^{-1}$ at 25^0C . (a) What will be the pressure, initially 500 Torr, after 50 s after initiation of reaction? (10%) (b) What is the half-life of N_2O_5 ? (5%)
- 7. Suppose that there is a temperature difference of 10 K between two metal plates that are separated by 1.0 cm in air (for which $\kappa=24.1\,$ mW K⁻¹ m⁻¹). What is the rate of energy transfer through an area of the opposite walls of 1.0 cm² in 1 h? (10%)

科目:單元操作與輸送現象

- 1. Please explain the following terms: (12%)
 - (a) Newtonian fluid and Non-Newtonian fluid (4%)
 - (b) Boundary conditions and Boundary layer thickness (4%)
 - (c) Friction drag and Friction loss factors (4%)
- 2. An oil is flowing down a vertical wall as a film 2mm thick. The oil density is 800 kg/m^3 and the viscosity is $0.2 \text{ Pa} \cdot \text{s}$. Calculate the mass flow rate per unit width of wall , Q , needed and the Reynolds number . Also calculate the average velocity . (18%)
- 3. A small capillary with an inside diameter of 2.5×10^{-3} m and a length 0.3 m is being used to continuously measure the flow rate of a liquid . The liquid density is $870 \text{ kg} / \text{m}^3$ and the viscosity is $1.2 \times 10^{-3} \text{ Pa} \cdot \text{s}$. The pressure-drop reading across the capillary during flow is 0.0655 m water head(density = $996 \text{ kg} / \text{m}^3$). What is the volumetric flow rate of the liquid if end-effect corrections are neglected? (20%)

科目: 化工動力學

1. A single reactant A is converted into products by an irreversible reaction with initial concentration C_{A0}.

- (a) Please derive half-life time $t_{1/2}$ as one-half of reactant A disappears, according to zero-order rate equation of A (10 分)
- (b) Please derive half-life time $t_{1/2}$, according to first-order rate equation of A (10 分)
- (c) Based on above equations, please provide a method to determine the rate equation of A to be zero-order or first-order. (5 分)
- 2. For a first-order elementary reversible reaction (A \leftrightarrow B), k_1 is the forward rate constant and k_2 is the reverse rate constant. K is the equilibrium constant, which is equivalent to (C_B)eq/(C_A)eq, wherein (C_B)eq and (C_A)eq represent concentrations of B and A at equilibrium state.
 - (a) Please derive equation [-d C_A/dt] in terms of C_A, k₁, k₂, C_{A0} and C_{B0}. C_{A0} and C_{B0} are initial concentrations of A and B respectively. (10 %)
 - (b) Please derive K in terms of C_{A0} , C_{B0} and (C_A) eq. (5 分)
 - (c) Please solve C_A in terms of C_{A0} , (C_A) eq, k_2 , K and t. (10 分)
- 3. (a) What is the chemical identity of a chemical species and its relationship to chemical reaction? (5 分)
 - (b) For a second-order reaction, if a large continuous stirred-tank reactor (CSTR, volume = 10 m^3) is replaced with two small CSTRs (volume = 5 m^3) connected in series, what will happen to the overall conversion rate? Please answer with proper explanation. (5 分)
 - (c) For the following plot of concentration vs time (fig. 1), please suggest the possible reaction mechanism and the reaction system with explanations. (5 分)

國立雲林科技大學 110 學年度 碩士班招生考試試題

系所:化材系

科目: 化工動力學

- 4. A liquid phase reaction, A+ 2B → C + D, is carried in a CSTR and is first order in both A and B with k = 0.001 dm³/mol·min at 300K with activation energy E = 19870 cal/mol. The feeding molar ratio between A and B is 1:2 with an overall molar flow rate of 150 mol/min. The feeding volumetric flow rate of A and B are 50 dm³/min and 100 dm³/min, respectively. If the reaction temperature can be elevated to 500K, what is the required volume of CSTR to achieve 90% conversion? (Hint: gas constant = 1.987 cal·K⁻¹·mol⁻¹) (20 分)
- 5. The following elementary liquid phase reactions are to be carried out, and species C is the desired product

$$A \longrightarrow B$$
 $r_B = k_B C_A^2$
 $A + B \longrightarrow 2C$ $r_C = k_C C_A C_B$

- (a) What is the instantaneous selectivity of C to B? (5 分)
- (b) What kind of reactor or combination of reactors and at what temperatures would you use for this reaction system? Please answer with explanations. (10 分)

科目: 化工熱力學

Problem #1 (15%)

Definition:

- 1) Second law of thermodynamics
- 2) Reversible processes
- 3) Residual properties
- 4) Phase rule
- 5) Explain A, B, C, D, and E from the below figure.

Problem #2 (15%)

Please derivate $\eta = 1 - \frac{T_c}{T_H}$ by Carnot's theorem. T_c and T_H represent the cold and hot temperatures.

Problem #3 (20%)

An inventor has devised a complicated nonflow process in which 1 mol of air is the working fluid. The net effects if the process are claimed to be:

- 1. A change in state of the air from 280 °C and 3 bar to 50 °C and 1 bar.
- 2. The production of 2200 J of work.
- 3. The transfer of an undisclosed amount of heat to a heat reservoir at 30 °C. Determine whether the claimed performance of the process is consistent with the second law. Assume that air is an ideal gas for which $C_p = 7/2R$.

Hint:
$$\Delta S = \operatorname{Cp} \ln \left(\frac{T_2}{T_1} \right) - R \ln \left(\frac{P_2}{P_1} \right)$$

科目: 化工熱力學

Problem #4 (15%)

(a) Please explain what physical meanings of fugacity, fugacity coefficient, and activity coefficient are, respectively? Please write their difference between pure i species and species i in solution. (b) Please show how to obtain the relationship between the standard Gibbs-energy and the equilibrium constant.

5. <u>Problem #5</u> (20%)

For the system methanol(1)/methyl acetate(2), the following equations provide a correlation for the activity coefficient: $\ln \gamma_1 = AX_2^2$, $\ln \gamma_2 = AX_1^2$, where A=2.8-0.005T And, the Antoine equations provide vapor pressures:

$$ln P_1^{\text{sat}} = 16.59 - \frac{3643.3}{T - 33.4}, \qquad ln P_2^{\text{sat}} = 14.25 - \frac{2665.5.3}{T - 53.4}$$

Where T is in Kelvins and the vapor pressure are in KPa. Assume the validity of modified Raoults Law, calculate:

- (a) P and y_i, for $T = 50^{\circ}$ C and $X_1 = 0.4$
- (b) P and Xi, for $T = 50^{\circ}C$ and $y_1 = 0.4$
- (c) The azeotropic pressure, and the azeotropic composition, for $T = 50^{\circ}C$.

6. Problem #6 (15%)

For thermodynamic property M, we can know $nM = M(T, P, n_1, n_2, ...n_i...)$, and \overline{Mi} a generic partial property. Please show how to obtain $M = \sum x_i \overline{Mi}$ and $\sum x_i \overline{Mi}$ and constant T and P.

碩士班招生考試試題

系所:化材系

科目:有機化學

1. Rank the following compounds in order of increasing stability based on relative ring strain. (3%)

- 2. Which of the following are chiral and capable of existing as enantiomers?
 - (a) 2-butanol; (b) 1,1-dibromopropane; (c) 2-chloro-2-methylpropane;
 - (d) 3-bromopentane; (e) 1-methyl-2-bromobicyclo[2.2.1]heptane;
 - (f) 2-propanol; (g) 2-bromopentane; (h) 1-fluoro-2-ethylpentane.

(More than one choice) (這題是複選題,答案不只一個選項) (16%)

3. Give the product (or products) that you would expect to be formed in each of the following reactions. In each case give the mechanism (S_N1, S_N2, E1, or E2) by which the product is formed and predict the relative amount of each (i.e., would the product be the only product, the major product, or a minor product?). (15%)

(a)
$$Br$$
 $CH_3O^ CH_3O^ CH_3OH, 50 °C$ (b) Br $CH_3OH, 50 °C$ (c) $CH_3OH, 50 °C$ (e) $CH_3OH, 25 °C$

4. Provide the alkene needed to synthesize each of the following by hydroboration-oxidation. (10%)

碩士班招生考試試題

系所: 化材系

科目:有機化學

5. Which acid of each pair shown here would you expect to be stronger? (6%)

(a)

(b)

(c)

6. Assign (R) or (S) configurations of the following molecules. (6%)

(a)
$$H_2C$$
 CH_3 $CH=CH_2$ $CH=CH_3$

7. (a) Provide the oxonium salt of the following reaction. (3%)

$$+$$
 HBr \rightarrow an oxonium salt $+$ Br \rightarrow

- (b) How to prepare pyridinium chlorochromate (PCC)? Please also provide the chemical structure of pyridinium chlorochromate (PCC) (6%)
- 8. (a) Provide the chemical structures of allyl radical and vinylic radical. (6%)
- (b) Arrange the order of relative stability for the following radicals. (5%) allylic or allyl radical; vinyl or vinylic radical; 1° radical; 2° radical; 3° radical.

碩士班招生考試試題

系所: 化材系

科目:有機化學

9. Provide the reaction products and intermediates as required. (15%)

(a)

(b)

10. Provide the endo and exo products of the following scheme. Which one is the major product for the shown reaction? (9%)

Major product