

系別:環境與安全衛生工程系

96 學年度轉學生招生考試試題(四年制二,三年級)科目:物理及化學

1. (10%)

Nickel has a face-centered cubic unit cell. The density of nickel is 6.84 g/cm³. Calculate a value for the atomic radius of nickel. (Ni=58.69 g/mol)

2. (10%)

An excited hydrogen atom emits light with a frequency of 1.141×10^4 Hz to reach the energy level for which n =4. In what principal quantum level did the electron begin?

Hint:
$$\Delta E = -2.178 \times 10^{-18} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

3. (10%)

The enthalpy of vaporization of mercury is 59.1 kJ/mo1. The normal boiling point of mercury is 372°C. What is the vapor pressure of mercury at 25°C?

4. (10%)

An iron ore sample contains Fe₂O₃ plus other impurities. A 652-g sample of impure iron ore is heated with excess carbon, producing 343 g of pure iron by the following reaction:(Fe=55.85)

$$Fe_2O_3(s)+3C(s)\rightarrow 2Fe(s)+3CO(g)$$

What is the mass percent of Fe₂O₃ in the impure iron ore sample? Assume that Fe₂O₃ is the only source of iron and that the reactions is 100% efficient.

5. (10%)

The bombardier beetle uses an explosive discharge as a defensive measure. The chemical reaction involved is the oxidation of hydroquinone by hydrogen peroxide to produce quinone and water:

$$C_6H_4(OH)_{2(aq)} + H_2O_{2(aq)} \rightarrow C_6H_4O_{2(aq)} + 2H_2O_{(1)}$$

Calculate $\triangle H$ for this reaction from the following data:

$$C_{6}H_{4}(OH)_{2(aq)} \rightarrow C_{6}H_{4}O_{2(aq)} + H_{2(g)} \qquad \triangle H = +177.4 \text{ kJ}$$

$$H_{2(g)} + O_{2(g)} \rightarrow H_{2}O_{2(aq)} \qquad \triangle H = -191.2 \text{ kJ}$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_{2}O_{(g)} \qquad \triangle H = -241.8 \text{ kJ}$$

$$H_{2}O_{(g)} \rightarrow H_{2}O_{(g)} \qquad \triangle H = -43.8 \text{ kJ}$$

國立雲林科技大學

系別:環境與安全衛生工程系

96 學年度轉學生招生考試試題 (四年制二, 三年級) 科目:物理及化學

6.(10%)

A playful astronaut releases a bowling ball, of mass m = 7.20 kg, into circular orbit about Earth at an altitude h of 350 km.

- (a) What is the mechanical energy E of the ball in its orbit?
- (b) What is the mechanical energy E_0 of the ball on the launchpad at Cape Canaveral? From there to the orbit, what is the change ΔE in the ball's mechanical energy?

7.(10%)

The cross-sectional area A_0 of the aorta (the major blood vessel emerging from the heart) of a normal resting person is 3 cm², and the speed v_0 of the blood through it is 30 cm/s. A typical capillary (diameter $= 6\mu$ m) has a cross-sectional area A of $3x10^{-7}$ cm² and a flow speed v of 0.05 cm/s. How many capillaries does such a person have?

8.(10%)

Figure 1. shows how the stream of water emerging from a faucet "necks down" as it falls. The indicated cross-sectional areas are $A_0 = 1.2$ cm² and A = 0.35 cm². The two levels are separated by a vertical distance h = 45 mm. What is the volume flow rate from the tap?

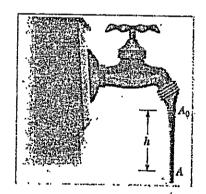


Fig. 1. As water falls from a tap, its speed increases.

Because the low rate must be the same at all cross sections, the stream must "neck down."

國立雲林科技大學

系別:環境與安全衛生工程系

96 學年度轉學生招生考試試題 (四年制二, 三年級) 科目:物理及化學

9.(10%)

A uniform solid cylindrical disk, of mass M = 1.4 kg and radius R = 8.5 cm, rolls smoothly across a horizontal table at a speed of 15 cm/s. What is its kinetic energy K?

10.(10%)

You are given a length of uniform heating wire made of a Nickel-chromium-iron alloy called Nichrome; it has a resistance R of 72 W. At what rate is energy dissipated in each of the following situations? (1) A potential difference of 120 V is applied across the full length of the wire. (2) The wire is cut in half, and a potential difference of 120 V is applied across the length of each half.

國立雲林科技大學 96學年度轉學生招生考試試題(四年制二年級) 科目:微積分

1. 試寫出
$$f'(a)$$
 的定義,並據此求 $f'(2)$,其中 $f(x) = \begin{cases} x[x], & x < 2 \\ 2x - 2, & x \ge 2 \end{cases}$ (10%)

2. 試求曲線
$$f(x) = \frac{x^3}{x^2 - 3}$$
 的截距、定義域、極大及極小値、+反曲點以及漸近線並繪圖形(15%)

4. 試求下列積分值

(1)
$$\int \cos^3 x \sin^2 x dx$$
 (2) $\int x^2 e^x dx$ (3) $\int \frac{dx}{x^2 \sqrt{x^2 + 4}}$ (20%)

5.
$$\sqrt[3]{\frac{1}{\sqrt{(3.98)^2 + (2.99)^2}}}$$
近似值 (10%)

6. Find the area of the region bounded by the parabola $y^2 = 2x - 2$ and the line y = x - 5. (20%)

7. Find
$$f'(t)$$
 if $f(t) = \sqrt{4\sin^2 t + 9\cos^2 t}$ (10%)