

系所:電機系

科目:工程數學

1. Apply Laplace transform to solve the equation,

$$y''(t) + 2ty'(t) - 6y = t; \quad y(0) = 0, y'(0) = 0$$
(10%)

2. Find the inverse Laplace transform for the following function. (10%)

$$\frac{s}{(s+1)^2(s^2+2s+5)}$$

3. Apply Laplace transform to find the solution for the following equations. (10%)

$$x(t) + 3 \int_0^t [x(\tau) - y(\tau)] d\tau = 1$$

$$y(t) + 2 \int_0^t [2y(\tau) - x(\tau)] d\tau = 0$$

4. Find the Fourier transform for the following function. (10%)

$$\frac{3e^{it}}{t^2-2t+5}$$

5. Find the inverse Fourier transform for the following function. (10%)

$$\frac{1}{(1+\omega^2)(4+\omega^2)}$$

6. Find the general solution for the following differential equations.

(i) 
$$y^2 + y - x \frac{dy}{dx} = 0$$
 (10%)

(ii) 
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 8y = 16 + (12x - 4)e^{2x}$$
 (15%)

- 7. Determine the relationship of a, b, c such that the following system of linear equations has (i) an infinite number of solutions (506)
  - (i) an infinite number of solutions, (5%)
  - (ii) exactly one solution, (5%)
  - (iii) no solution. (5%)

$$2x - y + z = a$$
$$x + y + 2z = b$$
$$3y + 3z = c$$

8. Let  $w = \begin{bmatrix} 1 \\ 2 \\ 3 \\ -12 \end{bmatrix}$ ,  $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} -1 \\ -2 \\ -3 \\ 4 \end{bmatrix}$  and  $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ . Write the vector w as a

linear combination of vectors 
$$v_1$$
,  $v_2$  and  $v_3$ . (10%)