					第	1	頁(共	8	頁)
	立 雲 林 和 學年度碩士班			•	所:運		(2)		-
	24皮侧工功	重限工仕戚	导现拍生方面	八武闼 鬥	目:統	a) (\$*			
(一) 選擇題:」	單選題・毎題 5	分。					•		
_	ity of stock A ri	-				prot	ability	r tha	t
(A) 0.42	e stocks rise, ass (B) 0.88	(C) 0.12	se two stocks at (D) 0.44	(E) 0.70	t?				
	(-)	、	(-)	(_)					
probability re	volved in an acc educes to 40%. robability that i	30% of all cars	are defective. I						
(A) 0.32	(B) 0.24	(C) 0.0343	(D) 0.12	(E) 0.4615		1			
		. 2				•			
	the probability				d we k	now	that th	ıe	
-	hat both A and E								
	d to each other		y exclusive (C		t				
(D) Depende	nt	(E) Unable t	o occur at the s	ame time					
4. When two fa	ir six-sided die	are tossed, wha	t is the expected	d value of the	sum of	fthe	faces	?	
(A) 6	(B) 7	(C) 5	(D) 4	(E) 12					
					• .•			~ 1	
5. What is the p	•	ł	-			e ne	xt hall	: hou	ır,
(A) 0.9084	are Poisson-distr (B) 0.0916	(C) 0.1465	(D) 0.8535	(E) None of		ove			
(11) 0.2004	(D) 0.0710	(C) 0.1405	(D) 0.8555						
6. The tempera	ture in a souther	m Florida city h	as a uniform di	istribution wit	h a ran	ge fi	rom 78	\$	
degrees to 95	5 degrees. What	is the mean of	this distribution	1?	•				
(A) 17	(B) 86.5	(C) 95	(D) 84.5	(E) 78					
7 1641	f 1	viable V is succ	4 4	:		- h-1 -	X7 4h -		
7. If the variand (A) The mean of		-		lance of rando	m vari	able	x, the	n:	
(B) The median	-								
(C) The probabil	-	-							
(D) The standard			the standard de	viation of Y					
(E)All of the abo	ove are true	•							
average, wit	of a particular h a standard dev	riation of 2.5 m	l. What proport					•	
than the mar	ked quantity? A	ssume a norma	a distribution.		-				

· · · · · ·

- -

-

-

ŧ

*

•

(A) 0.2192 (B) 0.4452 (C) 0.1151 (D) 0.0548 (E) None of the above

	第2頁は	* 0	與)	-
國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題	系所:運籌所 科目:統計學(2)	•		•

Ο

- 9. All of the following are characteristics of the normal distribution, except:
- (A) Symmetric about the mean
- (B) Bell-shaped curve
- (C) Total area under the curve is always one
- (D) It is a discrete distribution
- (E) Probability that x is equal to any specific value is zero
- 10. Suppose that an instructor gives an exam. This instructor wants to give those students in the top 2.5% an A on this exam. What will the cutoff be for an A, if the average score on this exam is 80, with a standard deviation of 5?

(A) About 80 (B) About 90 (C) About 85 (D) About 86 (E) None of the above

- (二) 計算題: Problems (50%)
- 1. (15%) Let X equal the number of telephone calls per five-minute period that are received at Pizza Hut store in the evening. Assume that the distribution of X is Poisson with mean λ .
 - (a) Given *n* observations of *X*, find the method of moments estimate of λ .
 - (b) Given a point estimate of λ using the following 12 observations of X:

1, 2, 1, 1, 2, 4, 0, 1, 0, 1, 1, 0

- (c) Compare the values of \bar{x} and s^2 . Does this information support the assumption that X has a Poisson distribution.
- 2. (20%) Regression methods were used to analyze the data from a study investigating the relationship between roadway surface temperature (x) and pavement deflection (y). Summary

quantities were n = 20, $\sum y_i = 12.75$, $\sum y_i^2 = 8.86$, $\sum x_i = 1478$, $\sum x_i^2 = 143215.8$, and

$$\sum x_i y_i = 1083.67.$$

(a) Calculate the least square estimates of the slop (β_1) and intercept (β_0) .

(b) Test the hypothesis H_0 : $\beta_1 = 0$ versus H_1 : $\beta_1 \neq 0$ using the analysis of variance procedure with $\alpha = 0.01$.

- (c) Calculate the coefficient of determination.
- (d) Calculate the sample correlation coefficient.

	第 3	頁(共	8	頁)
國立雲林科技大學 100學年度碩士班暨碩士在職專班招生考試試題	系所: 運籌所 科目: 統計學	ł	* , * , * ,	• •

3. (15%) A manager believes that the shelf life of apple juice is normally distributed. A sample of 30 containers of juice was taken and the shelf life was recorded. You are given the results below. The average shelf life in the sample was 23.07 days with a standard deviation of 4.29 days.

15	17	19	20	20	20 ·	21	21	21	21
21·	21	21	22	22	22	22	22	22	22
		25							

(a) State the null and alternative hypotheses.

(b) Compute the test statistic for the goodness of fit test.

(c) At 95% confidence using the *p*-value approach, test the hypotheses. What do you conclude about the distribution?

4 頁供 8 頁) 第

國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題

系所:運籌所 科目:統計學(2)

TABLE II (cont.) Areas under the					Seco	nd decir	nal plac	e in z
standard normal curve	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
0 <i>z</i>	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764
•	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962
	1.0	0.0000		~ ~ ~ ~ ~ ~ ~	0 0000			

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5 3.6 3.7 3.8 3.9	0.9998 0.9998 0.9999 0.9999 1.0000 [†]	0.9998 0.9998 0.9999 0.9999	0.9998 0.9999 0.9999 0.9999							

 † For $z \geq 3.90,$ the areas are 1.0000 to four decimal places.

第5頁(共8頁)

*

2

國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題

系所:運籌所

科目:統計學(2)

TABLE IV	<u> </u>			·			
Values of t_{α}	df	t _{0.10}	t _{0.05}	t _{0.025}	to.01 -	t 0.005	df
\wedge	1	3.078	6.314	12.706	31.821	63.657	1
/	2	1.886	2.920	4.303	6.965	9.925	2
/ _ ^ a	3	1.638	2.353	3.182	4.541	5.841	3
	4	1.533	2.132	2.776	3.747	4.604	4
$0 t_{\alpha}$	5	1.476	2.015	2.571	3.365	4.032	5
	6	1.440	1.943	2.447	3.143	3.707	6
	7	1.415	1.895	2.365	2.998	3.499	7
	8	1.397	1.860	2.306	2.896	3.355	8
	9	1.383	1.833	2.262	2.821	3.250	9
	10	1.372	1.812	2.228	2.764	3.169	10
	11	1.363	1.796	2.201	2.718	3.106	11
	12	1.356	1.782	2.179	2.681	3.055	12
	13	1.350	1.771	2.160	2.650	3.012	13
	14	1.345	1.761	2.145	2.624	2.977	14
	15	1.341	1.753	2.131	2.602	2.947	15
	16	1.337	1.746	2,120	2.583	2.921	16
	17	1.333	1.740	2.110	2.567	2.898	17
	18	1.330	1,734	2.101	2.552	2.878	18
	19	1.328	1.729	2.093	2.539	2.861	19
	20	1.325	1.725	2.086	2.528	2.845	20
	21	1.323	1.721	2.080	2.518	2.831	21
	22	1.321	1.717	2.074	2.508	2.819	22
	23	1.319	1.714	2.069	2.500	2.807	23
	24	1.318	1.711	2,064	2.492	2.797	24
	25	1.316	1.708	2.060	2.485	2.787	25
	26	1.315	1.706	2.056	2.479	2.779	26
	27	1,314	1.703	2.052	2.473	2.771	27
	28	1.313	1.701	2.048	2.467	2.763	28
	29	1.313	1.699	2.045	2.462	2.756	29
	30	1.310	1,697	2.042	2.457	2.750	30
	31	1.309	1.696	2.040	2.453	2.744	31
	32	1.309	1.694	2.037	2.449	2.738	32
	33	1.308	1.692	2.035	2.445	2.733	33
	34	1.307	1.691	2.032	2.441	2.728	34
	35	1.306	1.690	2.030	2.438	2.724	35
	36	1.306	1.688	2.028	2,434	2.719	36
	37	1.305	1.687	2.026	2.431	2.715	37
		1.303	1.686	2.020	2.429	2.712	38
	38 39	1.304	1.685	2.024	2.425	2.708	39
			1.684	2.021	2.423	2.704	40
	40	1.303		2.021	2.423	2.704	41
	41	1.303	1.683	2.020	2.421	2.698	42
	42	1.302	1.682		2.416	2.695	42
	43 44	1.302 1.301	1,681 1.680	2.017 2.015	2.410 2.414	2.692	43 44
	45	1.301	1.679	2.014	2.412	2.690	45 46
·	46	1.300	1.679	2.013	2.410	2.687	
	47	1.300	1.678	2.012	2.408	2.685	47
	48	1.299	1.677	2.011	2.407	2.682	48
	49	1.299	1.677	2.010	2.405	2.680	49

6 頁(共 8 頁) 第

Values

國 立 雲 林 科 技 大 學
100 學年度碩士班暨碩士在職專班招生考試試題

系所:運籌所 科目:統計學(2)

TABLE VII						
lues of χ^2_{α}	df	X ² 0.995	X ² 0.99	X ² 0.975	χ ² _{0.95}	X ² 0.90
	1	0.000	0.000	0.001	0.004	0.016
		0.010	0.020	0.051	0.103	0.211
	2 3	0.072	0.115	0.216	0.352	0.584
	4	0.207	0.297	0.484	0.711	1.064
χ^2_a	5	0.412	0.554	0.831	1.145	1.610
	6	0.676	0.872	1.237	1.635	2.204
	7	0.989	1.239	1.690	2.167	2.833
	8	1.344	1.646	2.180	2,733	3.490
	9	1.735	2.088	2.700	3.325	4.168
	10	2.156	2.558	3.247	3.940	4.865
	11	2.603	3.053	3.816	4.575	5.578
	12	3.074	3.571	4.404	5.226	6.304
	13	3.565	4.107	5.009	5.892	7.042
-	14	4.075	4.660	5.629	6,571	7.790
	15	4.601	5.229	6.262	7.261	8.547
	16	5.142	5.812	6.908	7.962	9.312
	17	5.697	6.408	7.564	8.672	10.085
	18	6.265	7.015	8.231	9.390	10.865
	19	6.844	7.633	8.907	10.117	11.651
	20	7.434	8.260	9.591	10,851	12.443
	21	8.034	8.897	10.283	11.591	13.240
	22	8.643	9.542	10.982	12.338	14.041
	23	9.260	10.196	11.689	13.091	14.848
	24	9.886	10.856	12.401	13.848	15.659
	25	10.520	11.524	13.120	14.611	16.473
	26	11.160	12.198	13.844	15,379	17.292
	27	11.808	12.879	14.573	16.151	18.114
	28	12.461	13.565	15.308	16.928	18.939
	29	13.121	14.256	16.047	17.708	19.768
	30	13.787	14.953	16.791	18.493	· 20.599
	40	20.707	22.164	24.433	26.509	29.051
	50	27.991	29.707	32.357	34.764	37.689
	60	35.534	37.485	40.482	43.188	46.459
	70	43.275	45.442	48.758	51.739	55.329
	80	51.172	53.540	57.153	60.391	64.278
	90	59.196	61.754	65.647	69.126	73.291
	160	67.328	70.065	74.222	77.930	82.358
			the second s	and the second se		

或

TABLE VII (cont.) Values of χ^2_{α}

. .

Ŀ

立雲林科技大學 100 學年度碩士班暨碩 士在職專班招生考試試題

.

X 0.05

•

 $\chi^{2}_{0.10}$

系所:運籌所 科目:統計學(2)

df

 $\chi^{2}_{0.005}$

		,		
	2.706	3.841	5.024	6.635
	4.605	5.991	7.378	. 9.210
	6.251	7.815	9.348	11.345
	7.779	9.488	11.143	13.277
	9.236	11.070	12.833	15.086
	10.645	12.592	14.449	16.812
	12.017	14.067	16.013	18.475
	13.362	15.507	17.535	20.090
	14.684	16.919	19.023	21.666
	15.987	18.307	20.483	23.209
	17.275	19.675	21.920	· 24.725
	18.549	21.026	23.337	26.217
	19.812	22.362	24.736	27.688
•	21.064	23.685	26.119	29.141
	22.307	24.996	27.488	30.578
	23 542	26 296	28 845	32,000

2.706	3.841	5.024	6.635	7.879	1
4.605	5.991	7.378	. 9.210	10.597	2
6.251	7.815	, 9.348	11.345	.12.838	3
7.779	9.488	11.143	13.277	· 14.860	4
9.236	11.070	12.833	15.086	16.750	5
10.645	12.592	14.449	16.812	18.548	6
12.017	14.067	16.013	18.475	20.278	7
13.362	15.507	17.535	20.090	21.955	8
14.684	16.919	19.023	21.666	23.589	9
15.987	18.307	20.483	23.209	25.188	10
17.275	19.675	21.920	· 24.725	26.757	11
18.549	21.026	23.337	26.217	· 28.300	12
19.812	22.362	24.736	27.688	29.819	13
21.064	23.685	26.119	29.141	31.319 '	14
22.307	24.996	27.488	30.578	32,801	15
23.542	26.296	28.845	32.000	34.267	16
24.769	27.587	30.191	33.409	35.718	17
25.989	28.869	31.526	34.805	37.156	18
27.204	30.143	32.852	-36,191	38.582	19
28.412	31.410	34.170	37,566	39.997	20
29.615	32.671	35.479	38.932	41.401	21
30.813	33.924	36.781	40.290	42.796	22
32.007	35.172	38.076	41.638	44.181	23
33.196	36.415	. 39.364	42.980	45.559	24
34.382	37.653	40.647	44.314	46.928	25
35.563	38.885	41.923	45.642	48.290	26
36.741	40.113	43.195	. 46.963	49.645	27
37.916	41.337	44.461	48.278	50.994	28
39.087	42.557	45.722	49.588	52.336	· 29
	43.773	46.979	50.892	53.672	30
51.805	55.759	• 59.342	63.691	66.767	40
63.167	67.505	71.420	76.154	79.490	50
74.397	79.082	83.298	88.381	91.955	60
85.527	90.531	95.023	100.424	104.213	70
96.578	101.879	106.628	112.328	116.320	. 80
107.565	113.145	118.135	124.115	128.296	90
118.499	124.343	129,563	135.811	. 140.177	100
			*		

, •

X 0.025

 $\chi^{2}_{0,01}$

1

i

ì

第 8 頁(共 8 頁)

.,

國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題

系所:運籌所

科目:統計學(2)

	TABLE VIII Values of F_{α}			r				dfn				
1	_	dfd	α	1	2	3	4	5	6	7	8	9
11			0.10	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86
	α		0.05							236.77	238.88	
	X	1	0.025							948.22		
0	Fa		0.01							5928.4		
			0.005		0000 2							4091
				1								
			0.10	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38
			0.05	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
		2	0.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39
			0.01	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
			0.005	198.50	199.00	199.17	199.25	199.30	199.33	199.36	199.37	199.39
			0.10	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24
			0.05	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
		3	0.025	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47
			0.01	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
			0.005	55.55	49.80	47.47	46.19	45.39	44.84	44.43	44.13	43.88
			0.10	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94
			0.05	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
		4	0.025	12.22	10.65	9.98	9.60	9.36		9.07	8.98	8.90
		-	0.01	21.20	18.00	16.69	15.98	15.52		14.98	14.80	14.66
			0.005	31.33	26.28	24.26	23.15	22.46	21.97	21.62	21.35	21.14
			0.10	4.06	3.78	3.62		3.45	3.40	3.37	3.34	3.32
			0.05	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
		5	0.025	10.01	8.43	7.76		7.15	6.98	6.85	6.76	6.68
		5	0.01	16.26	13.27	12.06		10.97	10.67	10.46	10.29	10.16
			0.005	22.78	18.31	16.53		14.94		14.20	13.96	
												2.96
			0.10 0.05	3.78 5.99	3.46 5.14	3.29 4.76		3.11 4.39	3.05 4.28	3.01 4.21	2.98 4.15	
		6										
		0	0.025	8.81		6.60					5.60	5.52
			0.01	13.75	10.92	9.78		8.75		8.26	8.10	7.98
			0.005	18.63	14.54	12.92		11.46		10.79	10.57	
			0.10	3.59	3.26	3.07		2.88	2.83	2.78	2.75	2.72
			0.05	5.59		4.35					3.73	
		7	0.025	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82
			0.01	12.25		8.45				6.99	6.84	
			0.0 <i>05</i>	16.24	12.40	10.88	10.05	9.52	9.16	8.89	8.68	8.51
			0.10	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56
			0.05	5.32		4.07					3.44	
		8	0.025	7.57		5.42					4.43	
		-	0.01	11.26		7.59		6.63		6.18	6.03	
			0.005	14.69		9.60		8.30			7.50	
				1			0.01	0.00				

.

•

國 立 雲 林 科 技 大 學 100 學年度碩十班暨碩十在職專班招生考試試題

系所: 工管系、運籌所

科目: 經濟學(1)

本份試卷第一部分為 20 題單選題,每題 3 分,請依題目順序將答案寫在答案卷上

- 1. Which of the following will cause an increase in the money multiplier
 - (A) a reduction in high powered money
 - (B) a decrease in the ratio of reserve to checkable deposits
 - (C) an increase in high powered money
 - (D) an increase in the public's preference for checking deposits as opposed to holding currency
- 2. Which of the following events will most likely cause an increase in money supply?
 - (A) a decrease in the ratio of reserves to deposits
 - (B) a central bank sale of bonds
 - (C) a shift in public preferences away from checkable deposits to currency
 - (D) all of the above
- 3. Which of the following events will cause the interest rate to increase?
 - (A) an increase in income
 - (B) an open market sale of bonds by the central bank
 - (C) an increase in the ratio of reserves to deposits
 - (D) all of the above

4. Suppose there is an increase in consumer confidence. Which of the following represents the complete list of variables that *must* increase in response to this increase in consumer confidence?

- (A) consumption and output
- (B) consumption, investment and output
- (C) consumption, output and the interest rate
- (D) consumption and investment

5. The natural level of employment will decrease when which of the following occurs?

- (A) a reduction in unemployment benefits
- (B) a reduction in the actual unemployment rate
- (C) a reduction in the markup of prices over costs
- (D) none of the above
- 6. For this question, assume that the economy is initially operating at the natural level of output. An increase in minimum wage will cause:
 - (A) a reduction in the real wage in the medium run
 - (B) ambiguous effects on the real wage in the medium run
 - (C) no change in the real wage in the medium run

科目: 經濟學(1)

100 學年度碩士班暨碩士在職專班招生考試試題

林 科 技 大 學

(D) an increase in the real wage in the medium run

- 7. As the proportion of labor contracts that index wages to prices declines, we would expect that:
 - (A) nominal wages will become more sensitive to changes in unemployment
 - (B) a reduction in the unemployment rate will now have a smaller effect on inflation
 - (C) the natural rate of unemployment will decrease
 - (D) the natural rate of unemployment will increase
- 8. Suppose individuals expect that interest rates will fall in the future. Also assume that the central bank wants to prevent any change in current output. Given this goal of the central bank, the central bank should implement a policy in the current period that:
 - (A) shifts the IS curve leftward
 - (B) shifts the LM curve upward
 - (C) shifts the IS curve leftward and the LM curve upward
 - (D) shifts the IS curve rightward
- 9. Suppose there is a fiscal expansion in the current period. This fiscal expansion will tend to cause a smaller increase in current output when:
 - (A) an increase in the current interest rate causes expectations of expansionary monetary policy in the future.
 - (B) an increase in the current interest rate causes an increase in expected future interest rates.
 - (C) an increase in current output causes an increase in expected future output.
 - (D) both A and B
- - (A) vertical; monetary
 - (B) horizontal; monetary
 - (C) vertical; fiscal
 - (D) horizontal; fiscal
- 11. You are a fan of both Jolin and A-Mei. The two superstars will hold concerts at different places on the same day. You are willing to pay 3,000 for a ticket to Jolin's concert at most. The ticket to Jolin's concert is now sold for 2,000. One of your friends gives you a free ticket to A-Mei's concert. You can only go to one concert at the same time. Assume there are no other implicit or explicit costs of going to either concert. What is the opportunity cost of going to A-mei's concert?
 - (A) 3,000 (B) 2,000 (C) 1,000 (D) 0

-2	頁(共	5	頁)

第

	一 國 立 雲 林 科 技 大 學 系所: 100 學年度碩士班暨碩士在職專班招生考試試題 科目:	
•		
12.	Which of the following is NOT a public good?	
	(A) A common park	
	(B) A lighthouse	
	(C) The national defense system	
	(D) The fireworks displayed on the top of Taipei 101 building.	
13.	The nature of Economic Cooperation Framework Agreement (ECFA) signed by Government and Mainland China is	/ Taiwan's
	(A) A free trade agreement	
	(B) A memorandum of understanding (MOU) of financial industry	
	(C) A peace agreement	Obing and
	(D) An agreement to facilitate capital and financial investment between Mainland Taiwan	
14.	Which of the following is NOT a source of market failure?	
	(A) Monopoly power	1 " 3
*	(B) Information asymmetry between buyer and seller	ł
	(C) Over-competition	
	(D) Externality	
15.	Which of the following is NOT a characteristic of competitive market equilibrium?	
	(A) Sellers are producers with the lowest production cost	
	(B) Buyers are consumers with the highest willingness to pay	
	(C) There are no other ways to make everyone better.	
	(D) Everyone will agree with the efficient and fairness of the equilibrium.	
		2
16.	Suppose Taiwan's government adopt luxury tax on items such as expensive cars and	private air
	planes. Which of the following statement is NOT true?	
	(A) The trading volume of luxury goods will decrease	
	(B) The price of luxury goods will increase	
	(C) The more elastic the demand of luxury good, the higher are the tax revenues.	-
	(D) The more elastic the demand of luxury good, the heavier is the tax burden on the	seller.
		r 1 2
17.	Who are the Nobel Prize winners in Economic Science in the year of 2010?	

٥

(A) Leonid Hurwicz, Eric S. Maskin, and Roger B. Myerson, for having laid the foundations of mechanism design theory

(B) Oliver F. Williamson for his analysis of economic governance, especially the boundaries of

100	國立	雲	林利	料ち	を大	學	寡班招生考試試題	· 系所:	工管系、運業	裔所 ·
1005	100學	年度很	頂土玩	<u> </u>	貢士在	職員	事班招生考試試題	科目:	經濟學(1)	· · ·

the firm

(C) Paul Krugman, for his analysis of trade patterns and location of economic activity(D) Peter A. Diamond , Dale T. Mortensen, and Christopher A. Pissarides, for their analysis of markets with search frictions

18. The minimum wage in Taiwan had been increased from \$95 to \$98 dollar per hour in 2010. Which of the following is NOT true after the increase of minimum wage?

(A) The cost of production will increase and employers may layoff some workers and result in unemployment.

- (B) This policy will not be helpful for those who earn more than \$100 dollar per hour
- (C) The side effect of unemployment will be more severe when the labor demand is inelastic
- (D) Most of the imported labor form the Philippines will also benefit from this policy.
- 19. Which of the following is a measure of income inequality?
 - (A) The Herfindahl index
 - (B) The Gini index
 - (C) The poverty line
 - (D) The Philip curve
- 20. Which of the following is a potential benefit of a monopolistic competition market form the point of view of social welfare?
 - (A) In the long-run equilibrium, firms earn zero profit and there is no deadweight lost
 - (B) Sellers provide a variety of goods
 - (C) In the short run, sellers set price equal to the marginal cost
 - (D) Sellers are not likely to practice price discrimination

本份試卷第二部分為3大題計算題,每小題4分,未提供計算過程或說明者不計分。

1. (20 分) Consider the following IS-LM model with prices fixed at P=1 (assuming that we are in the short run):

$$\frac{M^{d}}{P} = Y - r$$

$$C = 1 + 0.5 \times Y$$

$$I = 1 - 0.5 \times r$$

$$G = \overline{G}$$

$$Y = C + I + G$$

$$\frac{M^{s}}{P} = \frac{\overline{M}}{P}$$

雲林科技大學 E度碩十班暨碩十在職裏班招生考試試題

系所:工管系、運籌所 科目:經濟學(1)

$$\frac{M^d}{P} \le \frac{M^s}{P}, \quad \text{with} \quad \frac{M^d}{P} = \frac{M^s}{P} \quad \text{if} \quad r > 0$$

 $\pi^e = 0$

或

 $\overline{\mathbf{M}}$

100 學年

where M^d , M^s denotes money demand and money supply, respectively. $P, Y, r, C, I, G, i, \pi^e$ denote the price level, output, real interest rate, consumption, investment, government spending, nominal interest rate and inflation expectation, respectively.

- (a) Derive the IS curve.
- (b) Write down the LM curve.
- (c) What is the equilibrium interest rate in the economy?
- (d) What is the equilibrium output level in the economy?
- (e) Suppose that the economy described above is going through a recession and the government is trying to stimulate the economy. When will monetary policy be effective in stimulating the economy?
- (12 分) Consider the following game: A and B are roommates. They are considering whether to get a flu vaccine. If neither of them gets the vaccine, the probability of getting a flu (denote by p) is 0.5 for both of A and B. When only one of them get the vaccine, p=0.1 for the one who get the vaccine and p=0.2 for the one without the vaccination. If both of them get the vaccine, p=0.05 for A and B. Suppose the cost of getting a vaccination (denote by C) is 0.2. The payoff is calculated as (-p-C) for A and B.
 - (a) Do players in this game have dominating strategy? (please describe the strategy if your answer is yes)
 - (b) Is there any Nash Equilibrium in this game? (please find out all Nash Equilibriums if your answer is yes)
 - (c) Suppose Government import a safer and cheaper vaccine and therefore C decreases to 0.1, please find out all Nash Equilibriums if there are any.
- (8 分) Mr. Wang hires some workers to provide car wash service. The price of car wash is 100, which is determined by the competitive market. The relationship between the number of worker hired and the number of car washed is shown below:

# Worker	1	2	3	4	5	6	7	8	9	10
# Car	2 ` .	16	30	43	52	59	66	71	73	74

- (a) Suppose the wage is set at 1,100 by the labor market, how many workers will Mr. Wang hire?

第	頁(共	4	頁)
---	-----	---	----

	•
國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題	系所:工管所、運籌所 科目:微積分(2)
選擇題共 20 題,每題 5 分	
1. A rectangle has perimeter 18 m. Express the area of the rectang	gle as a function $A(l)$
of the length <i>l</i> of one of its sides.	,
(a) $A(l) = 18l + l^2$	
(b) $A(l) = 18l - l^2$	
(c) $A(l) = 9l + l^2$	
(d) $A(l) = 9l - l^2$	
	· .

2. Find a number δ such that $|\sqrt{4x+1}-3| < 0.4$ where $|x-2| < \delta$. Please give the

answer correct to two decimal places, rounding down if necessary.

(a) 0.56

2

- (b) 0.71
- (c) 0.64
- (d) 0.79

3. Determine the values of x for which the linear approximation $\frac{1}{(1+3x)^3} \approx 1-9x$ is accurate to within 0.15.

- (a) -0.65 < x < 0.66
- (b) -1.03 < *x* < 0.24
- (c) -0.57 < x < 0.68
- (d) -0.04 < x < 0.06
- 4. Two cars start moving from the same point. One travels south at 28 mi/h and the other travels west at 50 mi/h. At what rate is the distance between the cars increasing 4 hours later? Round the result to the nearest hundredth.
- (a) 57.31 mi/h
- (b) 55.31 mi/h
- (c) 58.32 mi/h
- (d) 57.34 mi/h ~
- 5. Use implicit differentiation to find an equation of the tangent line to the curve $y^2 = x^3(10 x^2)$ at the point (1, 3).
- (a) y = 3.33x(b) y = 4.33x - 1.33
- (c) y = 5.33x 2.33(d) y = 6.33x - 3.33

	第 2 頁供 4	. 頁)
以 國立雲林科技大學	系所:工管所、運籌所	
100學年度碩士班暨碩士在職專班招生考		
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
6. Use Newton's method to approximate the root of x^4	+x-3=0 in the interval [1,	
2], correct to six decimal places. Use $x_1 = 1.5$ as	the initial approximation.	
(a) $x = 1.164036$		
(b) $x = 1.164032$		
(c) $x = 1.164033$		
(d) $x = 1.164035$		
•		
7. For the given cost and demand functions, find the promaximize profit.	oduction level that will	
$C(x) = 680 \pm 11x \pm 0.04x^2$ $p(x) = 16 - \frac{x}{100}$	l i	
$C(x) = 680 + 11x + 0.04x^2, p(x) = 16 - \frac{x}{100}$		
(a) $x = 66$	1	
(b) $x = 50$		
(c) $x = 42$	i i i i i i i i i i i i i i i i i i i	
(d) $x = 54$:	
	i .	
8. Find the value of the limit $\lim_{x \to \infty} \frac{x^7}{x}$.	1	
8. Find the value of the mint $\lim_{x\to\infty} 7^x$.	ł	
(a) 7	;	
(b) ∞		
(c) 0 .		
(d) 1		
9. If $h(x) = x + \sqrt{x}$, find $h^{-1}(12)$.		
9. If $n(x) = x + \sqrt{x}$, find n (12).	r 1	
(a) 9	•	
(b) 8	, 1	
(c) 6	•	
(d) 11		
10. For a function $y = \sin(2 \cdot \ln x)$, find the equation o	f the tangent line to the curve	
at the given point $(1, 0)$.		
(a) $y = -x + 1$		
(b) $y = x - 1$		
(c) $y = 2x - 2$	1	

•

- (c) y = 2x 2(d) y = x

.

·

5

۶.

٠

.

林科技大學 立雲 系所:工管所、運籌所 十在聯重研招牛考試試題 100 學 科目:微積分(2) 11.A particle move along a line. Its velocity (m/sec.) at time t is $v(t) = t^2 - t - 6$. Find the distance (m) traveled during the time period $l \leq t \leq 4$ (a) 9/2(b) -9/2 (c) 61/6 (d)-61/6 12. Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$ (a) 16 (b)18 (c) 20 (d) None of the above 13. Evaluate the integral $\int_{1}^{2} \frac{\ln x}{x^2} dx$ (a) 0.5 - 0.5 ln2 (b) 0.5 ln2 - 0.5 (c) $0.5 + 0.5 \ln 2$ (d) - 0.5 ln2 - 0.5 14. Find $\int \frac{1}{x^2-9} dx$ (a) $6 \ln \left| \frac{x-3}{x+3} \right| + C$ $(b)\frac{1}{6}\ln\left|\frac{x-3}{x+3}\right| + C$ (c) $6 \ln \left| \frac{x+3}{x-3} \right| + C$ $(d)\frac{1}{6}\ln\left|\frac{x+3}{x-3}\right| + C$ 15. Evaluate $\int_{1}^{\infty} \frac{1}{(3x+1)^2} dx$ (a) 1/16 (b)-1/16 (c) 1/12 (d)-1/12

	_第
₩ 國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題	系所:工管所、運籌所 科目:微積分(2)
₩₩ 100 字平皮俱工班置阻工在戚等班指生方訊訊題	
16. Solve the equation $y' = x^2 y$	
(a) $y = Ae^{3x^3}$	
$(b)y = Ae^{3x}$	
(c) $y = Ae^{x/3}$	
(d) $y = Ae^{x^3/3}$	
17. Solve the differential equation $y' = x + 5y$	
(a) $y = -\frac{1}{5}x - \frac{1}{25} + Ce^{5x}$	
5 25	-
(b) $y = \frac{1}{5}x - \frac{1}{25} + Ce^{5x}$	
(c) $y = \frac{1}{5}x - \frac{1}{25} + Ce^{-5x}$	
(d) $y = -\frac{1}{5}x - \frac{1}{25} + Ce^{-5x}$	
18. $f(x,y) = xe^{-x^2-y^2}$, find partial derivative $f_x(x, y)$	
(a) $2xye^{-x^2-y^2}$	· .
(a) $2xye^{-x^2-y^2}$ (b) $-2xye^{-x^2-y^2}$	* , `
(c) $e^{-x^2-y^2}(2x^2-1)$	-
(d) $e^{-x^2-y^2}(1-2x^2)$	1 1
•	
$19.z = x^2 + xy + y^2$, $x = s + t$, $y = st$, use the Chain Rule to fin	d $\frac{\partial z}{\partial s}$
(a)x+2y+xs+2ys	
(b) $2x+y+xs+2ys$	
(c)x+2y+xt+2yt	
(d)2x+y+xt+2yt	
20. Find the directional derivative of $f(x, y, z) = x^2 + y^2 + z^2$ at the	point $P = (2, 1, 3)$ in
the direction of the vector $u = [-2, -1, -3]$	
$(a) - \sqrt{14}$	
(b) $-2\sqrt{14}$	
(c) $-3\sqrt{14}$	
(d) $-4\sqrt{14}$	

÷

I

•

.

(d) $-4\sqrt{14}$

۰.

ð

\$