| Second Decision of the matrix $A_{3x3} = \begin{bmatrix} 2 & 3 & 1 \\ -4 & 0 & 5 \\ 1 & 6 & 5 \end{bmatrix}$ , please list all the principal submatrix of matrix $A_{3x3} = \begin{bmatrix} 1 & 1 & 1 \\ -4 & 0 & 5 \\ 1 & 6 & 5 \end{bmatrix}$ , please list all the principal submatrix of matrix $A$ .<br>2. (13%) For a matrix $A_{3x3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$ , find two nonsingular matrices $A = (1 + 2 + 3)$ , find two nonsingular matrices $A = (1 + 2 + 3)$ .<br>P and $Q$ such that $PAQ$ is a diagonal matrix. Please show all the steps derivation.<br>3. (12%) For a system of linear equations $AX = B$ , where $A = \begin{bmatrix} 0 & a & 1 \\ a & 0 & b \\ a & a & 2 \end{bmatrix}$ , $B = \begin{bmatrix} b \\ 1 \\ 2 \end{bmatrix}$ Determine the values or conditions of $(a, b)$ for the system to have (a) a unique solution (b) a one-parameter solution (c) a two-parameter solution (d) no solution<br>4. (15%) Given the matrix $C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix $C$ .<br>5. (25%)—[dlib] diggets X $D$ /pluk dgs : $(0.1, 0.2, 0.1, 0.4, 0.2)$ $\mathbb{R}$ =-fatby has $f_x(x) \sim (0.25\%)$ , $\mathbb{R}$ =-fatby $\mathbb{R}$ and $\mathbb{R}$ | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 第 / 頁(共 /                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| of matrix A.<br>2. (13%) For a matrix $A_{3,x3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$ , find two nonsingular matrices<br>P and Q such that PAQ is a diagonal matrix. Please show all the steps.<br>derivation.<br>3. (12%) For a system of linear equations $AX = B$ , where<br>$A = \begin{bmatrix} 0 & a & 1 \\ a & 0 & b \\ a & a & 2 \end{bmatrix}$ , $B = \begin{bmatrix} b \\ 1 \\ 2 \end{bmatrix}$ Determine the values or conditions of $(a,b)$ for the system to have<br>(a) a unique solution<br>(b) a one-parameter solution<br>(c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix C.<br>5. (25%)—(a) abbig the matrix C.<br>5. (25%)—(a) abbig the matrix C.<br>5. (25%)—(a) abbig the matrix C.<br>6. (25%), Endbed the matrix for the matrix for the system of the matrix for the system of the matrix for the form of the matrix form the form of the form of the matrix form of the matrix form the form of the matrix form the form of the form of the matrix form the form of the matrix form the form of the matrix form the form of the form of the matrix form the form of the form of the form of the matrix form the form of the matrix form the form of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>         • 國 立 雲 林 科 技 大 學     </li> <li>         • 99 學年度碩士班暨碩士在職專班招生考試書     </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 系所:通訊所<br>式題 科目:線性代數與機率學                     |
| <ul> <li>2. (13%) For a matrix A<sub>3x3</sub> =</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. (10%) Given a matrix $A_{3x3} = \begin{bmatrix} 2 & 3 & 1 \\ -4 & 0 & 5 \\ 1 & 6 & 5 \end{bmatrix}$ , please li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | st all the principal submatrix               |
| P and Q such that PAQ is a diagonal matrix. Please show all the steps.<br>derivation.<br>3. (12%) For a system of linear equations $AX = B$ , where<br>$A = \begin{bmatrix} 0 & a & 1 \\ a & 0 & b \\ a & a & 2 \end{bmatrix}, B = \begin{bmatrix} b \\ 1 \\ 2 \end{bmatrix}$ Determine the values or conditions of $(a, b)$ for the system to have<br>(a) a unique solution<br>(b) a one-parameter solution<br>(c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix C.<br>5. (25%)—@Bdt UB W X DMU Kex : $\{0.1, 0.2, 0.1, 0.4, 0.2\}$ 取得一組對應值 :<br>$\{-1, -0.5, 0.7, 1.5, 3\}$ 。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x)$ 。<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of matrix A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| P and Q such that PAQ is a diagonal matrix. Please show all the steps.<br>derivation.<br>3. (12%) For a system of linear equations $AX = B$ , where<br>$A = \begin{bmatrix} 0 & a & 1 \\ a & 0 & b \\ a & a & 2 \end{bmatrix}, B = \begin{bmatrix} b \\ 1 \\ 2 \end{bmatrix}$ Determine the values or conditions of $(a, b)$ for the system to have<br>(a) a unique solution<br>(b) a one-parameter solution<br>(c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix C.<br>5. (25%)—IBB (BB (BB (BB (BB (BB (BB (BB (BB (BB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. (13%) For a matrix $A_{3x3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$ , find two non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | singular matrices                            |
| $\begin{aligned} A = \begin{bmatrix} 0 & a & 1 \\ a & 0 & b \\ a & a & 2 \end{bmatrix},  B = \begin{bmatrix} b \\ 1 \\ 2 \end{bmatrix} \end{aligned}$ Determine the values or conditions of $(a,b)$ for the system to have<br>(a) a unique solution<br>(b) a one-parameter solution<br>(c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$\begin{aligned} C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix} \end{aligned}$ Find the QR-factorization of the matrix $C$ .<br>5. (25%)—(d) d) d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P and $Q$ such that $PAQ$ is a diagonal matrix. <u>Please</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                            |
| Determine the values or conditions of $(a,b)$ for the system to have<br>(a) a unique solution<br>(b) a one-parameter solution<br>(c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix $C$ .<br>5. (25%)—(個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2}) 取得一組對應值:<br>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x) \circ$<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3. (12%) For a system of linear equations $AX = B$ , where $AX = B$ , and $AX = B$ , where $AX = B$ , and $AX = B$ , where $AX = B$ , and $AX = B$ , where $AX = B$ , and $AX = B$ , where $AX = B$ , where $AX = B$ , and $AX = B$ , and $AX = B$ , where $AX = B$ , and AX = | nere                                         |
| (a) a unique solution<br>(b) a one-parameter solution<br>(c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix $C$ .<br>5. (25%)—個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x)$ 。<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 $p=1/2$ , 不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $A = \begin{bmatrix} 0 & a & 1 \\ a & 0 & b \\ a & a & 2 \end{bmatrix},  B = \begin{bmatrix} b \\ 1 \\ 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |
| (a) a unique solution<br>(b) a one-parameter solution<br>(c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix <i>C</i> .<br>5. (25%)—個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br>{-1, -0.5, 0.7, 1.5, 3} 。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x)$ 。<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 $p=1/2$ , 不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Determine the values or conditions of $(a,b)$ for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system to have                               |
| (c) a two-parameter solution<br>(d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix <i>C</i> .<br>5. (25%)—個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x)$ 。<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| (d) no solution<br>4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix <i>C</i> .<br>5. (25%)—個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x)$ 。<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) a one-parameter solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| 4. (15%) Given the matrix<br>$C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ Find the QR-factorization of the matrix <i>C</i> .<br>5. (25%) 一個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x)$ 。<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 $p=1/2$ ,不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) a two-parameter solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| $C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$<br>Find the QR-factorization of the matrix <i>C</i> .<br>5. (25%) — 個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 $F_x(x)$ 以及密度函數 $f_x(x)$ 。<br>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br>分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (d) no solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ι.<br>·                                      |
| <ul> <li>[2 0 1]</li> <li>Find the QR-factorization of the matrix <i>C</i>.</li> <li>5. (25%)一個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br/>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 <i>F<sub>x</sub></i>(<i>x</i>)以及密度函數 <i>f<sub>x</sub></i>(<i>x</i>)。</li> <li>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br/>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4. (15%) Given the matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| <ul> <li>5. (25%)一個隨機變數 X 分別以機率: {0.1, 0.2, 0.1, 0.4, 0.2} 取得一組對應值:<br/>{-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數 F<sub>x</sub>(x)以及密度函數 f<sub>x</sub>(x)。</li> <li>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五<br/>分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不<br/>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br/>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C = \begin{bmatrix} 1 & -2 & -1 \\ 1 & 3 & 5 \\ 2 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •<br>•                                       |
| <ul> <li>{-1,-0.5,0.7,1.5,3}。請畫出它的機率分配函數 F<sub>x</sub>(x)以及密度函數 f<sub>x</sub>(x)。</li> <li>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。</li> <li>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Find the QR-factorization of the matrix $C$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |
| <ul> <li>6. (25%)某同學做一個有 5 個答案的單選題的考試題目。答對得十分,答錯倒扣五分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。</li> <li>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.(25%)一個隨機變數 X 分別以機率: {0.1, 0.2, 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,0.4,0.2} 取得一組對應值:                           |
| 分而未答則得零分。假設其真正會解而對答案的機率是 p=1/2,不會解或解不<br>出來而用猜的之機率是 1-p。當其用猜測的而選對答案的機率是 1/5。<br>(A) (10%)若其答對了,則其是真正會做而不是用猜測的機率為何?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | {-1, -0.5, 0.7, 1.5, 3}。請畫出它的機率分配函數F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $F_x(x)$ 以及密度函數 $f_x(x)$ 。                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 分而未答則得零分。假設其真正會解而對答案的<br>出來而用猜的之機率是 1-p。當其用猜測的而選對<br>(A) (10%)若其答對了,則其是真正會做而不是用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 幾率是 p=1/2,不會解或解不<br>打答案的機率是 1/5。<br>猜測的機率為何? |

•

ŀ

| 111             |     |
|-----------------|-----|
| L               |     |
| $\triangleleft$ |     |
| - 11 /          | 110 |

**國** 立 雲 林 科 技 大 學 系所:通訊所 99 學年度碩士班暨碩士在職專班招生考試試題 科目:通信系統

- 1. (20%) Given c(t)=a(t)b(t), where  $a(t)=\cos\omega_0 t$  and the Fourier transform of b(t) is  $B(\omega)$  where  $B(\omega) = 1$  for  $|\omega| < \omega 1$  and  $B(\omega) = 0$  for  $|\omega| > \omega 1$ 
  - (a) (6%) Find C( $\omega$ ) the Fourier transform of c(t).
  - (b) (7%)Let d(t)=c(t)a(t), find  $D(\omega)$  the Fourier Transform of d(t).
- $\sim$  (c), (7%) What is the minimum value of  $\omega_0$  which guarantees a complete recovery of B( $\omega$ ).
- 2. (20%) Given x(t)=cos  $\omega_0$  t which is sampled by p(t) =  $\sum_{K=-\infty}^{+\infty} \delta[t KT]$  to obtain the sampled

function  $x_{p}(t)$ .  $X_{r}(t)$  is obtained by passing  $x_{p}(t)$  through an ideal lowpass filter  $H(\omega)$ 

- with cutoff frequency  $\omega_c = \frac{\omega_s}{2}$ , where  $\omega_s = \frac{2\pi}{T} = 800$ . Find X, (t) in the following:
- (a)  $\omega_0 = 200$ ; (b)  $\omega_0 = 300$ ; (c)  $\omega_0 = 600$ ; (d)  $\omega_0 = 800$ ; (e)  $\omega_0 = 1000$ . (4% each, explain your reasons)
- 3. (20%) A certain symmetry is required for the transfer function of the filter in a vestigial sideband (VSB) transmitter.
  - (a) (10%) Describe the symmetry and give an example to explain (in detail) why it is required.
  - (b) (6%) What are the advantages of VSB modulation over single sideband (SSB) and double sideband (DSB) modulation?
  - (c) (4%) Explain why VSB is generally more popular in the transmission of TV signals than SSB and DSB?
- 4. (20%) A ternary system has the signal constellation as shown in Figure 1. Assume the signals are transmitted through an AWGN channel and the source symbols are equiprobable. Plot the decision regions for the coherent receiver and determine its average symbol error probability.



- 5. (20%) Consider the differential pulse code modulation (DPCM) system.
  - (a) (10%) Describe DPCM and discuss how it differs from conventional PCM.
  - (b) (6%) Discuss its advantages and disadvantages relative to conventional PCM.
  - (c) (4%) In what extreme cases will DPCM systems provide little advantage over conventional PCM systems?