JYL.	國	立 🗐	፪ 林	科	技	大	學	系所:	電子光電所
705	101 4	學年月	度碩士	班暨	E碩:	上在	職專班招生考試試題	科目:	工程數學(3)

- Assumed that the uniform ice ball has a volume 1000 cm³, its melting rate is 1. proportional to its surface area. After one minute, the volume of the ice ball deceased to be 729 cm³. How long will it takes that the volume is 125 cm³. (15%)
- The given equation: $(-xy \sin x + 2y \cos x)dx + 2x \cos x dy = 0$ 2. (a) Verify the D.E. is not exact. (3%) (b) Find the integrating factor u(x.y). (6%) (c) Find the solution of the D.E. (6%)
- 3. Given the equation $x^2y'' 3xy' + 3y = 2x^4e^x$ find the general solution.(10%)

Г **с**

- If the equation $f(t) = -1 + \int_0^t f(t \alpha) e^{-3\alpha} d\alpha$, find f(t) by Laplace 4. Transformer. (10%)
- Perform the indicated operation, give that 5.

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 4 & 3 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 2 & 1 \end{bmatrix}$$

(a) (2A+B)C (b) If 2X+3(A-B)=0, Find X. (10%)
6. If $A = \begin{bmatrix} 4 & 0 \\ 2 & -4 \end{bmatrix}$, Please find A^2 and A^n . (10%)
7. $A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5 \end{bmatrix}$
(a) Find eigenvalues and eigenvectors of A.

(b)Prove that these eigenvector are independent and orthogonal.

(c) compute $-A^3 + 11A^2 - 34AI + 30$ (15%)

If $\vec{A} = 2\vec{i} + 3\vec{j} - \vec{k}$, $\vec{B} = -\vec{i} + 3\vec{j} + \vec{k}$, Find (a) $\vec{A} \cdot \vec{B}$ (b) $\vec{A} \times \vec{B}$ (c) The 8. projection of \overline{A} on \overline{B} (15%)

SA	威	立	雲	林	科	技	大	學	系所:電子光電所
T	101	學年	F度研	頁 士	班暨	碩	上在	職專班招生考試試題	科目:電子學(2)

1. (a)(5%)

Figure 1(a) shows the equivalent circuit of an amplifier. Please derive the voltage gain V_o/V_s of amplifier as a function of frequency.

Fig. 1(a)

Fig. 1(b)

ML.	國 立 雲 林 科 技 大 學	系所:電子光電所
T	101 學年度碩士班暨碩士在職專班招生考試試題	科目:電子學(2)

- Figure 2 illustrates an application of op-amp. Assume that the op-amp is ideal.
 (a)(5%) Find the resistances looking into node 1 to node 4, R₁ to R₄.
 - (b)(5%) Find the currents I_1 , I_2 , I_3 , and I_4 in terms of the input current I.

Fig. 2

3. Figure 3 shows an output amplifier. Assume that v_{IN} sweeps from -2.5V to +2.5V. Let K_p' = 50μA/V², V_{tp} = -0.7V, and λ_p = 0.05V⁻¹. Ignore bulk effects.
(a)(5%) Find the maximum value of v_{OUT}.

(b)(10%) Find the minimum value of v_{OUT} .

(c)(10%) Find the positive and negative slew rate, SR+ and SR-, when $v_{OUT}=0V$.

Fig. 3

國立雲林科技大學 系所:電子光電所 101 學年度碩士班暨碩士在職專班招生考試試題 科目:電子學(2)

- 4. For the circuits in Fig. 4, $\mu_n Cox = 2.5 \ \mu_p Cox = 20 \ \mu A/V^2$, $|V_l| = 1 \ V$, $\lambda = 0$, $\gamma = 0$, $L = 10 \ \mu m$ and $W = 30 \ \mu m.$
- (a)(10%) Find I_a and V_a in Fig. 4 (a).
- (b)(10%) Find I_b and V_b in Fig. 4 (b).
- (c)(10%) Find I_c and V_c in Fig. 4 (c) with $L = 10 \ \mu m$ and $W = 75 \ \mu m$ for M_5 .

- 5. In the circuit of Fig. 5, transistor M_1 and M_2 have $V_1 = 0.5$ V, and the process transconductance parameter $k_n = 50 \,\mu \text{A/V}^2$. Assuming $\lambda = 0$, find V_1 , V_2 , and V_3 for each of the following cases: (a)(4%) $(W/L)_1 = (W/L)_2 = 20$ (b)(4%) $(W/L)_1 = 2 (W/L)_2 = 10$

50 KΩ

Fig. 5

第4頁供4頁)

₩ 國 立 雲 林 科 技 大 學	系所:電子光電所
₩ 101 學年度碩士班暨碩士在職專班招生考	考試試題 科目:電子學(2)

6. The shunt-shunt feedback amplifier in Fig. 6 has I = 1 mA and $V_{GS} = 0.8$ V. The MOSFET has $V_t = 0.6$ V and $V_A = 30$ V. For $R_s = 10$ K Ω , $R_I = 1$ M Ω , and $R_2 = 4.7$ M Ω ,

(a)(4%) find the voltage gain v_0/v_s .

(b)(4%) find the input resistance R_{in} .

(c)(4%) find the output resistance R_{out} .

Fig. 6

國立雲林科技大學

系所:電子光電所 科目:計算機組織(l)

101 學年度碩士班暨碩士在職專班招生考試試題 科目:

- 1. Number system conversion (10%)
 - (a) Binary to octal number : $(10010001101011.110100000110)_2 = (?)_8$
 - (b) Hexadecimal to binary number : $(316.C)_{16} = (?)_2$
 - (c) Please find the 1's complement of $(1001000)_2 = (?)$
 - (d) Please find the 10's complement of $(243700)_{10} = (?)$
 - (e) Binary number to Gray Code: (1011001) 2=(?)
- 2. Explain the following abbreviations. (10%)
 - (a) RISC (3%)
 - (b) CISC (3%)
 - (c) VLIW (2%)
 - (d) SIMD (2%)
- 3. Design and draw the schematic of a 4-bit carry lookahead adder. (10%)
- 4. Trace the Booth's algorithm step by step for the multiplication of 3x(-6). (10%)
- 5. Complete the following figure for implementation of a four-way set-associative cache with four comparators and a 4-to-1 multiplexor. (10%)

- Given the memory values below and a one address machine with an accumulator, what values do the following instructions load into the accumulator? (10%)
 - Memory word 20 contains 40
 - Memory word 30 contains 50

第 2 頁(共 2 頁)

國立雲林科技大學

系所:電子光電所

101 學年度碩士班暨碩士在職專班招生考試試題 科目

科目:計算機組織(1)

- Memory word 40 contains 60
- Memory word 50 contains 70.
- (a) LOAD IMMEDIATE 20
- (b) LOAD DIRECT 20
- (c) LOAD INDIRECT 20
- (d) LOAD IMMEDIATE 30
- (e) LOAD DIRECT 30
- (f) LOAD INDIRECT 30
- 7. For the 16 bit binary number 1001 0101 1100 0011, show the effect of (10%)
 - (a) A right shift of 4 bits with zero fill
 - (b) A right shift of 4 bits with sign extension
 - (c) A left shift of 4 bits
 - (d) A left rotate of 4 bits
 - (e) A right rotate of 4 bits.
- 8. Consider each instruction has 5 stages in a computer with pipelining techniques. Each stage takes 4ns. (10%)
 - (A) What is the maximum number of MIPS that this machine is capable of with 5-stage pipelining techniques?
 - (B) What is the maximum number of MIPS that this machine is capable of in the absence of pipelining?
 - (C) From the above questions (A) and (B), we can know that the pipelining allows a tradeoff between latency and processor bandwidth. Please explain what is latency and what is bandwidth?
- 9. There are two computers A and B with the following performance information. (10%)

Computer A: Cycle time = 250 ps, Cycle per instruction = 2.0 Computer B: Cycle time = 600 ps, CyclE per instruction = 1.2 If both computers have the same instruction set architecture, which computer is faster? How many times is one faster as the other?

10. Computer A has 2GHz clock. It takes 10s CPU time to finish one given task. We want to design Computer B to finish the same task within 5s CPU time. The clock cycle number for Computer B is 2 times that of Computer A. So, what clock rate should be designed for Computer B? (10%)

以 國立雲林科技大學	系所:電子光電所
101學年度碩士班暨碩士在職專班招生考試試	<u>題</u> 科目:半導體元件

- -

1.	Explain or define the following terms:	
	(a) Ionization energy of acceptors in a semiconductor	(5%)
	(b) Mobility of charge carriers	(5%)
	(c) Fermi energy level in a semiconductor	(5%)
	(d) Effective mass of electrons	(5%)

2. Make a comparison between the p-type and the n-type semiconductors.

(15%)

- Describe the effects of the dopant concentrations on the built-in potential of a p-n junction diode. (15%)
- Draw the typical log(J)-V characteristics of an ideal pn diode and indicate the current components from reversed- to forward-biases . (15%)
- 5. The charge distribution in a device is showed in Fig. 1, where $Q_1+Q_2=Q_3$. Draw the curves of electric field vs. distance and electric potential vs. distance. (20%)
- 6. Explain (a) flat band voltage, (b) fixed oxide charge and (c) surface potential. (15%)

12	或
TAT	101

國 立 雲 林 科 技 大 學 ^系 101 學年度碩士班暨碩士在職專班招生考試試題 ^科

系所:電子光電所 科目:電磁學

- 1. Suppose a propagating electric field is given by
 - $E(z, t) = 34e^{-0.002z}\cos(2\pi \times 10^9 t 10\pi z + 45^\circ)$ V/m. Find
 - (a) the initial amplitude, (b) the attenuation constant, (c) the wave frequency,
 - (d) the wavelength and (e) the phase shift in radians, including the unit. (15%)
- 2. (a) Find out the integral $\int \frac{dx}{(x^2+a^2)^{3/2}}$ (5%)
 - (b) A segment of line charge $\rho_L = 10$ nC/m exists on the x-axis from x = -3.0 m to x = +3.0 m. Determine E at the point (0.0, 3.0, 0.0)m. (12%)
- 3. (a) Find the inductance per unit length (L/h) internal to a solid conductive wire with radius a, and with current I distributed evenly over the cross section. (6%)
 (b) A coaxial cable (coax) consists of a pair of cylindrical metallic shells of inner radius a and outer radius b. Determine the inductance per unit length (L/h) of the coax. (6%)
 (c) Consider a coaxial cable with solid inner conductor of radius a and a conductive outer shell at radius b, filled with nonmagnetic material (μ_r = 1). Find the total inductance per unit length (L/h). (6%)
- 4. The magnetic flux density increases at the rate of 10 Wb/m²/s in the z direction. A 10×10 cm square conducting loop, centered at the origin in the x-y plane, has 10 Ω of distributed resistance. Determine the direction (with a sketch) and magnitude of the induced current in the conducting loop. (12%)
- 5. Find \bar{H} , if a uniform current density $\bar{J} = \hat{a}_z J_0 (A/m^2)$, or a vector magnetic potential $\bar{A} = \hat{a}_z \frac{-\mu_0 J_0}{4} (x^2 + y^2) (Wb/m)$ are given. (12%)
- 6. If $\vec{D} = 2r\hat{a}_R C/m^2$, find the total electric flux leaving the surfaces of the cube where 0 < x, y, z < 0.4m. (10%)
- 7. What are the Maxwell equations in integral form? (8%)
- 8. The surface x = 0 separates two perfect dielectrics (no free charge). For x > 0, let $\varepsilon_{r1} = 3$, while $\varepsilon_{r2} = 5$ where x < 0. Find \vec{D}_2 , for x < 0, if $\vec{E}_1 = 80\hat{a}_x - 60\hat{a}_y - 30\hat{a}_z$ V/m for x > 0. (8%)

頁)