

國 立 雲 林 科 技 大 學 98 學年度碩士班入學招生考試試題

系所:光電所 科目:工程數學

- 1. (10%)Solve the differential equation: $\frac{dy}{dx} + xy = \frac{2x}{y}$.
- 2. (10%)Solve the differential equation: $y'' 5y' + 6y = 4\sin 4x$.
- 3. (15%) Find the eigenvalues and eigenvectors of the matrix: $\begin{bmatrix} 2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0 \end{bmatrix}$
- 4. (15%) Find the Fourier series for the periodic function defined by $f(t) = \frac{2}{\pi}t + 2$ for $-\pi \le t \le \pi$, and $f(t+2\pi) = f(t)$.
- 5. (10%)Please use the separation of variables to find the solution of the partial differential equation $y \frac{\partial^2 u}{\partial x \partial y} + u = 0$.
- 6. (15%)Please solve the wave equation $a^2 \frac{\partial^2 u}{\partial r^2} = \frac{\partial^2 u}{\partial t^2}$, 0 < x < L, t > 0, subject to u(0,t) = 0, $u(\pi,t) = 0$, u(x,0) = 0, $\frac{\partial u}{\partial t}\Big|_{t=0} = \sin x$.
- 7. (10%)Please solve (1) ln(3-2i), (2) sin(2i).
- 8. (15%)Please solve the integral value of $\oint_c \frac{\cos \pi z}{(z-1)^5} dz$, where the contour C is the circle: |z|=r>1.

(15%)

系所:光電所 科目:半導體元件

 Explain or define the following terms: (a) Ionization energy of donor impurities in a semiconductor (b) Built-in potential of p-n junction (c) Fermi-Dirac distribution of electrons in a semiconductor (d) Effective mass of holes 	(5%) (5%) (5%) (5%)
2. Make a comparison between the abrupt and the graded p-n junctions.	(15%)
3. Describe the basic electrical properties of a Schottky-barrier junction.	(15%)
4. Selection problem set:	(15%)
(1) The turn-on voltage of an Al-Si Schottky diode may be (A) 0.05V (B) 0.35V (C) 0.75V (D) 2.5V •	
 (2) When the temperature is increased from 50°K to 200°K, the conductate doped semiconductor is (A) increased (B) decreased (C) unchanged (D) undecided (3) Mobility of carrier is not dependent on 	led
(A) temperature (B) doping concentration (C) electrical field (D) defect (4) What semiconductor parameter can't be obtained by Hall measurement? (A) conductive type (B) minority carrier mobility (C) minority carrier concentration (D) majority carrier mobility	
 (5) What may decrease when temperature is increased? (A) intrinsic concentration (B) mobility (C) Fermi-Dirac distribution function (D) energy band gap 	
5. A set of parameters of silicon npn common-emitter BJT are given as $N_B = 5 \times 10^{16}$, $N_E = 5 \times 10^{18}$, $N_C = 5 \times 10^{15}$, $\mu_E = 250$, $\mu_B = 1000$, $\tau_{B0} = 5 \times 10^{-7}$ s, $\tau_{B0} = 0.25$ μ m, $\tau_{C0} = 0.25$ and $\tau_{C0} = 0.25$ $\tau_{C0} =$	
 (a) V_{BE} is hold constant voltage about 0.6V. If V_{BC} is changed from 0V to find the changed percentage of I_C? (b) I_B is hold constant under V_{BE} = 0.6V and V_{BC} = 0V. If V_{BC} is changed to the changed section of the change of the ch	(10%)
to 10V, find the changed percentage of I _C ?	(10/0)

$$[n_i = 1.5 \times 10^{10}, V_i = 26 \text{mV}, \epsilon_s = 11.7\epsilon_o, \epsilon_o = 8.85 \times 10^{-14}, \phi_m \text{ (Al)} = 4.28 \text{V}]$$

6. Explain (a) flat band voltage, (b) short channel effect and (c) Zener breakdown.

圆立雲林科技大學 98 學年度碩士班入學招生考試試題

系所:光電所 科目:電磁學

- 1. A spherical distribution of charge $\rho = \rho_0 [1 (R^2/b^2)]$ exists in the region $0 \le R \le b$. This charge distribution is concentrically surrounded by a conducting shell with inner radius R_i (> b) and outer radius R_0 . Determine E everywhere (10%) and the surface charge density at the inner and outer surfaces of the conductor. (10%)
- 2. Two infinitely long coaxial cylindrical surfaces, r = a and r = b (b > a), carry surface charge densities ρ_{sa} and ρ_{sb} , respectively. Determine E everywhere. (15%)
- 3. Two blocks of conducting materials are in contact at the y = 0 plane. At a point P in the interface, the current density is $J_1 = 10 (a_y 4 + a_z 3) (A/m^2)$ in medium 1 (conductivity σ_1). Determine J_2 at P in medium 2 if $\sigma_2 = 2\sigma_1$. (15%)
- 4. Assume the xy-plane is the interface between two media. If the magnetic field intensity \mathbf{H}_1 in medium 1 (permeability μ_1) is $-3\mathbf{a}_x 4\mathbf{a}_z$ (A/m) at the interface, find the magnetic field intensity \mathbf{H}_2 in medium 2 (permeability μ_2). Assume that $\mu_1 = 2\mu_2$, and the surface current density at the interface = $-\mathbf{a}_y$ 2 A/m. (15%)
- 5. Determine the magnetic force per unit length between two infinitely long, thin, parallel conducting wires carrying I_1 and I_2 in the same direction. The wires are separated by a distance d. (10%)

Also determine the direction of the force (attraction or repulsion). (5%)

6. The instantaneous expression for the magnetic field intensity of a uniform plane wave propagating in the +y direction in air is given by

$$\mathbf{H} = \mathbf{a_z} \, 4 \times 10^{-6} \cos(2 \times 10^7 \pi t - k_0 y + \frac{\pi}{4}) \qquad (A/m)$$

- (a) Determine k_0 . (10%)
- (b) Write the instantaneous expression for E. (10%)