

系所:資工系

科目:計算機概論(1)

1. Determine the value, true (1) or false (0), of the following Boolean expressions in C++. Please indicate if some expression produces an error

```
int a = 0, b = 10;

(a) !((((a < b) || (x < y)) && (a >= 0)) || ((b / a) > 5)) (5%)

(b) ((b / a) > 0) || (b <= 10) (5%)
```

2. Rewrite the following loop in C++ as for loop. (8%)

```
long m = 100;
do {
    cout << 'X';
    m += 100;
} while (m < 1000);</pre>
```

- 3. Write a C++ function double power(int x, int n) to calculate xⁿ, where n can be positive, zero, or negative (n is an integer). (8%)
- 4. Consider the following C++ codes:

```
struct Node
{ double data;
Node *next; };
typedef Node* Pointer;
Pointer q;
```

Assume that \mathbf{q} points to a node of type Node that is on a linked list and is not the last node on the list. Write C++ codes to delete the node after the node pointed to by \mathbf{q} . (8%)

یم

系所: 資工系

科目:計算機概論(1)

5. What is the output of the following C++ code fragment? (8%)

```
int ArraySize = 15;
int *p; p = new int [ArraySize];
int *a = p; int i;
for (i = ArraySize - 1; i >= 0; i--) p[i] = i;
a[0] = -1; a[ArraySize - 1] = -2;
for (i = 0; i < ArraySize; i++) cout << p[i] << ""; cout << endl;</pre>
```

- 6. Write C++ codes to implement Quicksort and analyze its time complexity. (8%)
- 7. In computer science, garbage collection is a mechanism of memory management. Please describe in detail what garbage collection is. In addition, what are the advantages and disadvantages of garbage collection? (10%)
- 8. Consider a direct-mapped cache with 256 blocks and a block size of 16 bytes. To what block number does byte address 19 map? Assume that the block numbering is zero-based numbering. (10%)
- 9. What is the difference between interrupt-driven I/O versus polling I/O? (You should describe the difference as much detail as possible.) (10%)
- 10. Suppose we have a processor with a base CPI of 1.0, assuming all references hit in the primary cache, and a clock rate of 4GHz. Assume a main memory access time of 100ns, including all the miss handling. Suppose the miss rate per instruction at the primary cache is 2%. How much faster will the processor be if we add a secondary cache that has a 7.5ns access time for either a hit or a miss and is larger enough to reduce the miss rate to main memory to 0.5%? (10%)
- 11. Suppose that we can improve the floating point instruction performance of machine by a factor of 5 (the same floating point instructions run 5 times faster on this new machine). What percent of the instructions must be floating point to achieve a speedup of at least 4? (10%)

國立雲林科技大學 104 學年度 碩士班招生考試試題

系所:資工系

科目:作業系統

A. 題目1至題目10為單選題, 每題5分。(50%)

- 1. Which events can cause a trap (or software interrupt)?
 - (A) division by zero
 - (B) I/O completion
 - (C) clock interrupt
 - (D) event completion
- 2. Which are correct for computing environments?
 - (A) Apple iOS is is an open-source system.
 - (B) A hard real-time system guarantees that critical tasks be completed on time.
 - (C) One type of cloud computing is software as a service (SaaS) that provides storage available over the Internet.
 - (D) In a peer-to-peer system, the server is a bottleneck.
- 3. Which schedulers can be used to control the degree of multiprogramming?
 - (A) job scheduler
 - (B) CPU scheduler
 - (C) multi-processor scheduler
 - (D) disk scheduler
- 4. Which are correct for process states?
 - (A) If a process is created, it will enter the "running" state.
 - (B) If the waiting event of a process occurs, the process will enter the "running" state.
 - (C) If a running process executes I/O, it will enter the "waiting" state.
 - (D) If a running process encounters an interrupt, it will enter the "waiting" state.
- 5. Which are correct for multithreading?
 - (A) A traditional process has multithreading control.
 - (B) A multithreaded process comprises a register set and multiple stacks.
 - (C) Linux implements the many-to-one multithreading model.
 - (D) Solaris 9 supports the one-to-one multithreading model.
- 6. Which scheduling criteria cannot be used to compare CPU-scheduling algorithms?
 - (A) waiting time
 - (B) turnaround time
 - (C) I/O access time
 - (D) responsetinme

國立雲林科技大學 104 學年度 碩士班招生考試試題

系所:資工系

科目:作業系統

7. For deadlock prevention that a process requests all needed resources prior to commencement of execution, what conditions does the approach try to prevent?

- (A) mutual exclusion
- (B) hold and wait
- (C) no preemption
- (D) circular wait
- 8. Which are incorrect for pure segmentation?
 - (A) Segmentation is a memory-management scheme that supports the user view of memory.
 - (B) A particular advantage of segmentation is the association of protection with the segment.
 - (C) An advantage of segmentation involves the sharing of code or data.
 - (D) Like paging, segmentation has no external fragmentation.
- 9. Which are correct for page sizes?
 - (A) Because each active process must have its own copy of the page table, a small page size is desirable.
 - (B) To minimize internal fragmentation, we need a large page size.
 - (C) A desire to minimize I/O time argues for a large page size.
 - (D) With a larger page size, locality will be improved.
- 10. Which are correct for virtual memory?
 - (A) FIFO page replacement is a stack algorithm.
 - (B) The LRU strategy is the optimal page-replacement algorithm looking backward in time, rather than forward.
 - (C) The accuracy of the working set depends on the selection of Δ (i.e., the working-set window). If Δ is too small, it will encompass the entire locality.
 - (D) If I/O is done to or from user virtual memory, these pages do not need to be locked in memory when demand paging is used.
- B. 題目11至題目13為詳答題。(50%)
 - 11.[Synchronization] (20%)
 - (a) What are four sections in a process that tries to solve the synchronization problem? [Hint: 4 sections] (5%)
 - (b) What is the general structure that consists of 4 sections for a process to solve the synchronization problem? (5%)
 - (c) What are three requirements that should be satisfied for solving the synchronization problem? (10%)

國立雲林科技大學 104 學年度

碩士班招生考試試題

系所: 資工系

科目:作業系統

12. [Memory management](20%)

- (a) What type of address does CPU reference? (5%)
- (b) Why? (5%)
- (c) Why needs paging for memory management? (5%)
- (d) Describe the mechanism of paging for memory management. (5%)

13.[Cloud Computing] (10%) //Specify the functions of each in detail, rather than translation.

- (a) What is the Virtual Machine (VM) in Cloud Computing: (3%)
- (b) Why needs a VM? (2%)
- (c) In cloud computing, what is the first step function has to be included? Why? (2%)
- (d) List at least 2 main functions provided by Cloud Computing. (3%)

國立雲林科技大學 104 學年度

碩士班招生考試試題

系所: 資工系

科目:線性代數暨離散數學

1. (12%) Given $A^{-1} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & 5 \\ -1 & 1 & 0 \end{bmatrix}$ (a) Find A. (b) Solve the system of equations $Ax = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ (c)

Find a matrix B such that $AB = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ (d) Find a matrix C such that

 $CA = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \end{bmatrix}$

- 2. (4%) Compute the determinant of $A = \begin{bmatrix} 1 & -1 & 2 & 0 & 2 \\ 0 & 1 & 0 & 4 & 1 \\ 1 & 1 & 5 & 0 & 0 \\ 0 & 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$
- 3. (8%) (a) Find the characteristic polynomial, eigenvalues and eigenvectors for $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (b) Find the eigenvalues for A^T
- 4. (6%) Diagonalize the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2 \end{bmatrix}$ as the form $P^{-1}AP = D$ where D is a diagonal matrix and P is an invertible matrix.
- 5. (10%) Find the least square approximating line for the data points {(1, 1), (3, 2), (4, 3), (6, 4)} and use it to predict the point (5, y). Show the pair (5, y).
- 6. (10%) (a) Find the matrix that maps R2 \rightarrow R2 such that $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 7 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ (b) Proof that the transformation is linear.
- 7. (5%) If there is an inverse function of f(x), find the inverse of the function f(x) = ax b from R to R, where a and b are integers.
- 8. (5%) Compute $C(n,0) C(n,1) + C(n,2) C(n,3) + ... + (-1)^n C(n,n) = ?$

國立雲林科技大學 104 學年度 碩士班招生考試試題

系所:資工系

科目:線性代數暨離散數學

9. (6%) A box contains twelve white, eight black, and ten blue balls.

- a) How many ways can you choose a sample of three white, two black, and six blue balls?
- b) What is the probability that a sample of three balls contains one of each color?
- 10. (5%) Draw the graph corresponding to the relation \geq on the set $\{2, 3, 4, 5\}$
- 11. (9%) Show that any two consecutive terms in the Fibonacci Sequence are relatively prime.
- 12. (10%) In how many ways can a 100-foot wall be built from 6-foot and 10-foot sections, ignoring the order of the sections?
- 13. (10%) Prove that for all $n \in \mathbb{Z}^+$, $n > 3 \Rightarrow 2^n < n!$.