國立雲林科技大學 102 學年度碩士班暨碩士在職專班招生考試試題

1．（15\％）The following statements are incorrect，point out and correct the errors in each of them．
（a）(3%) Every tree is a binary tree．
（b）（ 3% ）For an undirected graph G with n vertices，if G is a tree then G has n edges．
（c）(3%) If node A has three brothers and B is the father of A ，the degree of B is 3 ．
（d）（3\％）For an undirected graph G，if G contains no cycles，then G must be a tree．
（e）（ 3% ）To measure the time－complexity of an algorithm，the best way is to write a program for this algorithm and see how fast it runs．

2．（ 10% ）What are the similarities and the differences between Router and Switch？
3．(15%) First give the definition of a heap．Then explain how to establish a heap by using the input $10,12,1,14,6,5,8,15,3$.

4．（ 10% ）Give a recursive function below：

```
function f(x, n:integer):integer;
```

begin
if $n=1$ then $f:=x$

```
                        else f:=x*f(x, n-1)
```

end；
（a）(4%) What is the terminating condition of the above function？
（b）(6%) What is the value of $f(5,5)$ ？
5．(5%) What is the output of the following program？

```
#include <iostream>
using namespace std;
int fun(int x, int *y);
int main ()
{
    int }a=2,b=3\mathrm{ ;
    cout<<"ans="<<fun(a, &b);
}
int fun (int x, int *y)
{
    int c=*y-1;
    if (*y==1)
                return (x);
    else
                return (x*fun(x, &c));
}
```

6．(15%) Given the program segment listed below，If the starting address of a［ ］is 500 and an integer is store with 2 bytes in memory．Please answer the following questions．

```
#include <iostream>
using namespace std;
int main ()
i
        int a[10], *p1, *p2, b=500, i;
        p1=a;
        p2=&a[5];
        for (i=0; i<10; i++) {
            *p1=b, p1++, b+=5;
        }
}
```

（a）(5%) What is the value of $\mathbf{p} 2$ after the＂for＂loop？
（b）(5%) What is the value of a［4］after the＂for＂loop？
（c）(5%) What is the value of $*(\mathrm{p} 2+2)$ after the＂for＂loop？

7．$(20 \%)(a)(5 \%)$ Using the following key values，show the results of all runs of quick sort．
27，38，2．72．12，60，25，56， 18.
（b）（ 5% ）Please describe the best and the worst cases of quick sort．
（c）（ 10% ）Please also derive the time complexity of the best case and worst case for the quick sort algorithm on n elements．

8．(10%) Write a $\mathrm{C} / \mathrm{C}++$ program that reads in two integers and computes
（a）(4%) the number of odd numbers．
（b）(6%) the greatest common divisor（ GCD ）of the two integers．

1．For primitive statements p, q ，verify that $p \rightarrow[q \rightarrow(p \wedge q)]$ is a tautology． （10\％）

2．The Fibonacci numbers may be defined recursively by $F_{0}=0, F_{1}=1$ ；and $F_{n}=F_{n-1}+F_{n-2}$, for $n \in Z^{+}$with $n \geq 2$ ．
（1）．Please prove that for any positive integer $n, \sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}}=1-\frac{F_{n+2}}{2^{n}}$
（2）．If $n=6$ ，then $\sum_{i=1}^{n} \frac{F_{1-1}}{2^{i}}=$ ？

3．Solve the recurrence $a_{n}=2 a_{n-1}+3 a_{n-2}$ when given the initial conditions $a_{0}=5$ ， $a_{1}=3$ ．（20\％）

4．If n and r are positive integers with $n \geq r$ ，how many solutions are there to

$$
x_{1}+x_{2}+\cdots+x_{r}=n
$$

Where each $\boldsymbol{x}_{\boldsymbol{i}}$ is a positive integer，for $1 \leq \boldsymbol{i} \leq \boldsymbol{r}$ ？

5．Please indicate the listing of all subsets of a set $\{w, x, y, z\}$ by using Gray code． （10\％）

6．Let $f: Z \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(x)=x^{2}+5$ ．Please lists $f^{-1}(B)$ for the following various subsets \boldsymbol{B} of the codomain \boldsymbol{R} ．
（a）$B=[6,7]$ ，
（b）$B=[5,+\infty)$ ，
（C）$B=[6,10]$ ，
（d） $\boldsymbol{B}=[-4,5)$ ．

7．Let $\boldsymbol{A}=\{1,2,3,4,5,6,7\}, \boldsymbol{B}=\{x, y, z\}$ ，and $f: A \rightarrow B$ be the onto function

$$
f=\{(1, x),(2, z),(3, x),(4, y),(5, z),(6, y),(7, x)\}
$$

Define the relation \mathfrak{R} on \boldsymbol{A} by $\boldsymbol{a} \mathfrak{R} \boldsymbol{b}$ if $f(\boldsymbol{a})=f(\boldsymbol{b})$ ．Please write out the relation \mathfrak{R} and show that it is an equivalence relation．

\section*{明國立雲林科技大學
 系所：資工系
 102 學年度碩土班暨碩：卜在職專班招生考試試題

A．題目1至題目 10 為單選題，每題 5 分。

1．What kind of memory is the initial bootstrap program stored in？
（A）RAM
（B）tape
（C）ROM
（D） CD

2．What information is not determined through system generation？
（A）What CPU is to be used
（B）How many process states are to be used
（C）How much memory is available
（D）What devices are available

3．What is the stucture of Mach？
（A）monolithic structure
（B）layered approach
（C）microkernel
（D）modules

4．What scheduler controls the degree of multiprogramming？
（A）long－term scheduler
（B）short－term scheduler
（C）medium－term scheduler
（D）CPU scheduler

5．What benefit do thread pools offer？
（A）higher throughput
（B）faster servicing a request
（C）unlimited threads
（D）More productivity

6．Which is the optimal scheduling algorithm？
（A）RR scheduling
（B）priority scheduling
（C）FCFS scheduling
（D）SJF scheduling

7．What requirement does a solution to the critical－section problem not satisfy？
（A）deadlock－free
（B）mutual exclusion
（C）progress
（D）bounded waiting

8．Which technique is not the common one for structuring a page table？
（A）hierarchical paging
（B）hashed page tables
（C）inverted page tables
（D）linked page tables

9．What factor argues for a large page size？
（A）internal fragmentation
（B）locality
（C）page table size
（D）CPU time

10．What allocation methods are not supported in UNIX inodes？
（A）linked allocation
（B）direct blocks
（C）single indirect blocks
（D）double indirect blocks

B．題目 11 至題目 13 為詳答題。 (50%)
11．（a）Why we need the synchronization mechanism in an operating system？（5\％）
（b）What is the problem of the＂race condition＂？（5\％）
（c）How to solve the problem？（5\％）

12．［CPU scheduling］Determine the AWT（Average waiting time）and ATT（Average turnaround time）by using the Round－Robin（RR）scheme with time－slice＝4 and the following parameters？（20\％）［Note：（1） If there are several processes with the same arrival time，the process with the shortest burst time will be scheduled firstly．（2）Give a detail time－line based figure for solving them．］

Process	Burst time	Arrival time
P1	8	2
P2	5	0
P3	3	0
P4	2	9

De 國立雲林科技大學

13．What type of address does CPU reference？（3\％）
Why？（ 4% ）
Why needs paging for memory management？（4\％）
Describe the mechanism of paging（4\％）．［total：15\％］

國立雲林科技大學102學年度 系所：資工系碩士班暨碩士在職專班招生考試試題 科目：線性代數（2）

本試題共八題，共計 100 分，請依題號作答㸉將答案寫在答案卷上，違者下不予計分。

1．（ 10% ）Solve the following systems of equations using the method of Gauss－Jordan elimination．
（a）$\left\{\begin{array}{c}x_{1}-x_{2}+x_{3}=3 \\ -2 x_{1}+3 x_{2}+x_{3}=-8 \\ 4 x_{1}-2 x_{2}+10 x_{3}=10\end{array}\right.$
（b）$\left\{\begin{array}{c}x_{1}+3 x_{2}+6 x_{3}-2 x_{4}=-7 \\ -2 x_{1}-5 x_{2}-10 x_{3}+3 x_{4}=10 \\ x_{1}+2 x_{2}+4 x_{3}=0 \\ x_{2}+2 x_{3}-3 x_{4}=-10\end{array}\right.$

2．(15%) Construct single 2×2 matrices that define the following transformation on \mathbf{R}^{2} ．Find the image of the point $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ under ea ch transformation．
（a）A rotation through $\frac{\pi}{2}$ cou nterclockwise，then a contraction of factor 0.5 ．
（b）A dilation of factor of 4 ，then a reflection in the x－axis．
（c）A refle ction about the x－axis，a dilation of factor 3 ，then a rotation through $\frac{\pi}{2}$ in a clockwise direction．

3．(20%) Find the eigenvalues and corresponding eigenspaces of the matrix

$$
\left[\begin{array}{lll}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

4．(5%) If A is a 3×3 matrix wi th $|A|=-2$ ，compute the following determinants．
（a）$|3 A|$
（b）$\left|2 A A^{t}\right|$
（c）$\left|A^{3}\right|$
（d）$\left|\left(A^{t} A\right)^{2}\right|$
（e）$\left|2 A^{t}\left(A^{-1}\right)^{2}\right|$

國立雲林科技大學 102 學年度 系所：資工系碩士班暨碩士在職專班招生考試試題 科目：線性代數（2）

5．(10%) Find the least－squares parabola for the following data points．$(-3,3),(0,1),(2,1)$ ，and $(4,3)$ ．

6．(20%) Given the matrix A as shown below，answer the following questions．

$$
A=\left[\begin{array}{lll}
3 & 2 & 0 \\
2 & 2 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

（a）Show that the following matrix A is diagonalizable．
（b）Find a diagonal matrix D that is similar to A ．
（c）Determine the similarity transformation that diagonalizes A ．
（d）Compute A^{9} ．
7．(10%) Find a basis for the row space of the following matrix A ，and determine its rank．

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 4 \\
1 & 1 & 5
\end{array}\right]
$$

8．(10%) Show that the set $\left\{(1,0,0),\left(0, \frac{3}{5}, \frac{4}{5}\right),\left(0, \frac{4}{5},-\frac{3}{5}\right)\right\}$ is an orthonormal set．

國立雲林科技大學 102 學年度 系所：資工系
 碩士班暨碩士在職專班招生考試試題 科目：計算機組織（2）

1．If machine A runs a program in 10 seconds and machine B runs the same program in 20 seconds，how much faster is A than B ？（ 10% ）
2．Machine $M 1$ takes 10 seconds to run a program A ．Machine $M 2$ takes 8 seconds to run the same program．If the clock rates of machine $M 1$ and $M 2$ are 200 MHz and 400 MHz ， respectively．And the program A instructions executed on $M 1$ and $M 2$ are $200^{*} 10^{6}$ and $160 * 10^{6}$ ，respectively．Please find the clock cycles per instruction（CPI）for program A on both machines．（ 10% ）

3．Table 1 shows the measurement results of average CPI for instructions and average the instruction frequencies for gcc and spice compiler．Compute the effective CPI value for each compiler．（20\％）

Table 1

Instruction	Average CPI	gcc	spice
Arithmetic	1 clock cycles	48%	50%
Data transfer	1.4 clock cycles	33%	41%
Conditional branch	1.7 clock cycles	17%	8%
Jump	1.2 clock cycles	2%	1%

4．Figure 1 representation of a single precision floating－point numbers in IEEE 754 standard contains one sign bit s， 23 significant bits，and 8 exponent bits E ．What is the decimal value of the floating－point representation？（ 10% ）

s	exponent	significant
1	10000001	11100000000000000000000

Figure 1.
5．What kind of hazard occurs in the following instruction？（5\％）How to resolve it？（5\％） sub \＄s1，\＄t0，\＄t1
add $\$ \mathrm{t} 2, \$ \mathrm{~s} 1, \$ \mathrm{t} 3$
6．Assuming a cache of 2 K blocks，a 4 －word block size，and a 32 －bit address，show the fields in a memory address if the cache is directed mapped．（ 10% ）
7．Consider a cache with 64 blocks and a block size of 16 bytes．To what block number does byte address 1216 map？（10\％）
8．What is interrupt－driven I／O？（5\％）What is memory－mapped I／O？（5\％）
9．What is the average time to read or write a 512－byte sector for a typical disk rotating at 15,000 RPM？The average seek time is 3 ms ，the transfer rate is $100 \mathrm{MB} / \mathrm{sec}$ ，and the controller overhead is 0.3 ms ．Assume that the disk is idle so that there is no waiting time．（ 10% ）

