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® Based on the abridged paper below, please answer the following questions:

1. Please detailed explain the difference between user satisfaction and technology
acceptance by this paper and your opinions. (20%)

2. From you have learned research method, please tell me the main meaning of

Table 2. (10%)

3. After reading the paper, please practically point out two future works in
application of information system.{20%) ‘

4, Use examples to describe and distinguish between object-based beliefs,
attitudes and behavioral beliefs, attitudes, then relate them to IS design,
implementation, and prediction of usage. (15%)

5. Describe the correspondence principle, and comment on the role it plays to
bridge the gap between two research streams. (15%)

6. Based on the major findings of this research, suggest implications for practice as

well as for research, (20%)
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1. Introduction

Information technology (IT) researchers have devel-
oped rich streams of research that investigate the
factors and processes that intervene between IT invest-
ments and the realization of their economic value.
Commonly, researchers tie these factors and processes
to user perceptions about IT and how it impacts their
work. Although researchers have examined such per-
ceptions in dozens of different ways (Delone and

McLean 1992), in general, there have been two dom- .

inant approaches employed—user satisfaction (e.g.,
Bailey and Pearson 1983, Ives et al. 1983, Melone
1990, Seddon 1997) and technology acceptance (e.g.,
Davis 1989, Hartwick and Barki 1994, Szajna 1996,
Venkatesh et al. 2003). Both research streams offer
valuable contributions to our understanding of IT,
although each tells only part of the story. The purpose
of this study is to integrate the two research streamns
so that, together, they can provide a more complete

understanding of the way in which system features
ultimately influence IT usage.

The ,user satisfaction literature explicitly enumer-
ates system and information design atiributes {e.g.,
information accuracy and system reliability), making
it a potentially useful diagnostic for system design;

. however, user satisfaction is a weak predictor of sys-.

temn usage (Davis et al. 1989, Goodhue 1988, Hartwick
and Barki 1994, Melone 1990). This is attributable to
the fact that beliefs and attitudes about objects (such
as an information system) are generally poor predic-
tors of behaviors (such as system usage) (Ajzen and
Fishbein, in press).

By contrast, the technology acceptance literature
(i.e., the technology acceptance model, or TAM) pro-
vides sound predictions of usage by linking behaviors
to attitudes and beliefs (ease of use and usefulness)
that are consistent in time, target, and context with the
behavior of interest (system usage). Despite its predic-
tive ability, TAM provides only limited guidance about
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how to influence usage through design and imple-
mentation (Taylor and Todd 1995, Verkatesh et al.
2008). For example, designers receive feedback regard-
ing ease of use and usefulness in a general sense, but
they do not receive actionable feedback about impor-
. tant aspects of the IT artifact itself (e.g,, flexibility, inte-
gration, completeness of information, and information
currency). Such guidance was a core objective in the
development of TAM, but orte that has received lim-
ited attention (Davis et al. 1989).

Although user satisfaction and technology accep-
tance have evolved largely as parallel research
strearns, the two approaches can and should be inte-
grated (Goodhue 1988, Hartwick and Barki 1994,
Melone 1990, Seddon 1997). Such integration can help
build a conceptual bridge from design and imple-
mentation decisions to system characteristics to the
prediction of usage. Ultimately, this would improve
the predictive value of user satisfaction and augment
the practical utility of technology acceptance. Further-
more, by theoretically integrating the two very impor-
tant IT research streams, we can answer the call to
provide a way for perception-based IT research to
more fully examine the role of the IT artifact (Benbasat
and Zmud 2003, Orlikowski and Iacono 2001).

To accomplish this, we apply concepts from the
broader attitude literature (e.g., Ajzen 2001; Ajzen and
Fishbein, in press; Eagly and Chaiken 1993; Fazio and
Olson 2003; Haddock and Zanna 1999). Specifically,
the paper develops a model that explicitly distin-
guishes the object-based beliefs and attitudes found in
the user satisfaction literature from behavioral beliefs
and attitudes in the technology acceptance literature.
It enumerates a set of system and information charac-
teristics that irifluence system and information qual-
ity, describes how they in turn influence object-based
beliefs and attitudes with the system and the infor-
mation it produces, and then describes how these
object-based attitudes toward the system can shape
the behavioral beliefs of usefulness, ease of use, and,
ultimately, system usage.

The remainder of the paper proceeds as follows. Sec-
tion 2 builds the theoretical arguments for the pro-
posed research model. In §3, we present the back-
ground for a preliminary study that tested this model
in the context of data warehousing. The resilts of an
empirical test &f this model are presented in §4. They

are based on a sample of 465 users of data warehous-
ing predefined reporting software from seven different

organizations. Finally, in §5, we provide a discussion _

of the findings and an agenda for future research.

2. Theoretical Development

2.1. Understanding Behavioral Beliefs
and Attitudes

According to the expectancy-value theory developed
by Ajzen and Fishbein (1980), external variables influ-
ence beliefs about the outcomes associated with per-
forming a behavior, which in turn shape attitudes
toward performing a behavior. Attitude, in turn,
influences intention to perform the behavior and,
ultimately, influences the behavior itself. Satisfaction
in a given situation is a person’s feelings or atti~
tudes toward a variety of factors affecting that situ-
ation. As articulated in the theory of reasoned action
(TRA), these relationships will be predictive of behav-
ior when the attitude and belief factors are specified in
a rnanner consistent with the behavior to be explained
in terms of time, target, and context (Ajzen and Fish-
bein, in press; Fazio and Olson 2003). Within the IT
literature, these ideas have taken shape in the form
of the TAM. TAM has been widely applied to under-
stand the attitude one holds about the use of technol-
ogy, which is used to predict the adoption and use
of information technology. The attitude construct in
TAM represents attitude toward the behavior of using
technology.

Over the past decade, the technology acceptance
literature has included a large number of empirical
tests, comparisons, model variants, and model ext-
ensions. As Figure 1 illustrates, researchers have ext-
ended TAM in three primary ways to provide greater
understanding and explanatory power and addi-
tional points of managerial leverage in its application.
The first approach involves introducing factors from
related models, such as subjective norm, perceived
behavioral control, and self-efficacy (e.g., Hartwick
and Barki 1994, Taylor and Todd 1995, Mathieson
et al. 2001). A second approach involves introducing
additional or alternative belief factors to the model.
Most often, this includes adding key related factors
from the diffusion of innovation literature, such as
trialability, compatibility, visibility, or result demon-
strability (Agarwal and Prasad 1997, Karahanna et al.
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Figure1  The TAM (Davis 1988} and Thres Popular Extensions
Behavioral beliefs
E § Behavioral aftitude
Perceived H
C. External usefulness hd
variables
{e.g., demographics,
system characteristics,
personality {raits)
A. Factors from
related models
{e.g., subjective
B. Additional norm, perceived
belief factors behavioral control)

{e.g., trialability,

compatibility)

1999, Plouffe et al. 2001}. A third approach has been to
examine external variables, which are antecedents to
or that moderate the influence of ease of use and use-
fulness within the TAM, such as personality traits and
demographic characteristics {e.g., Gefen and Straub
1997, Venkatesh 2000, Venkatesh and Morris 2000).
Verikatesh et al. (2003) provide a comprehensive
examination of eight different models and derive a
unified theory of acceptance and use of technology.!
Despite this extensive research activity, only a
handful of TAM studies have looked explicitly at the
role of system characteristics as antecedents to ease
of use or usefulness (e.g., Davis 1993, Igbaria et al.
1995, Lim and Benbasat 2000). For the most part, these
studies have treated system characteristics at a holis-
tic level or have looked at a limited number of fea-
tures. One exception to this is the work by Hong
et al. (2001-2002) that examines how dimensions of
usability (information relevance, clarity of terminol-
ogy, and screen design) influence ease of use and
usefulness in the context of a digital library applica-
tion. Their results show miixed effects with only rele-
vance influencing both usefulness and ease of use. In
their integration of the technology acceptance litera-
ture, Venkatesh et al. (2003) stress the need to extend
this literature by explicitly considering system and
information characteristics and the way in which they

1The Venkatesh et al. (2003} study provides an excellent review of
TAM studies,

might influence the core beliefs in TAM, and might
indirectly shape system usage.

2.2. Understanding Object-Based Beliefs
and Attitudes

In contrast to the technology acceptance literature,
system and information characteristics have been core
elements in the literature on user satisfaction (Delone
and McLean 1992). Within this literature, user satisfac-
tion is typically viewed as the attitude that a user has
toward an information system; therefore, it represents

an object-based attitude. User satisfaction primarily

has been measured by various subsets of beliefs about
specific systems, information, and other related char-
acteristics {e.g., IT service).

This becomes clear when one examines user sat-
isfaction instruments, such as Bailey and Pearson
{1983), Baroudi and Orlikowski (1988), Doll and Tork-
zadeh (1988), and Ives et al, {1983) (see Table 1). These
instruments use a characteristics-based approach for
measuring user satisfaction. Although these instru-
ments have been criticized for containing an arbitrary
assortment of characteristics (Galletta and Lederer
1989), the items from user satisfaction instruments
appear to conceptually represent a relatively small
number of higher order constructs. Thus, the existing
measures of user satisfaction provide a useful base for
identifying and examining the underlying structure of
system and information characteristics.

A fundamental problem with user satisfaction
research has been its limited ability to predict system
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Table 1

Salisfaction Surveys and Conslrucls

External
variables

Instrument
_characteristics

Balley and
Pearson {1983)

Ives et al.

{1983}

. Baroudi and Doll and
Orlikowski {1988)  Torkzadeh (1988)

System quality

Information quality

i

Service quality

Usefulness
Ease of use

Outcome expactations

E

Organizational factors

|

H
i

Accessibllity
Timeliness

.Language

Flexibility
Integration
Efficient

Accuracy
Precision
Reliability
Currency
Gompleteness
Format
Volume

Relationship with EDP staif

Communication with EDP staff

Technical competence of
EDP staff

Attitude of EDP staff

Schedule of products or
services

Time required for new
development

Processing of change
requests

Vendor support

Response time

Means of input with
EDP center

Usefulness
Relevancy

User friendly
Easy to use

Expectations
Understanding of systems
Confidence in the system
Feslings of participation
Feelings of cantrol
Degree of training

Job effects

Top management involvement

Organizational competition
with EDP

Priorities determination

Charge-back method

Error recovery

Security of data

Documentation
Organizational pasition of EDP
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usage (Davis et al. 1989, DeLone and McLean 1992,
Goodhue 1988, Hartwick and Barki 1994, Melone
1990, Seddon 1997). However, when one considers the
general attitude literature, the equivocal relationship
between user satisfaction and usage can be under-
stood. For a belief or attitude to be directly predictive
of behavior, it needs to be consistent in time, target,
and context with the behavior. Therefore, satisfaction
with the system and its information output is unlikely
to be directly predictive of the use of that system.
Instead, user satisfaction needs to be recognized
as an object-based attitude (Ajzen and Fishbein 1980,
p- 84) whereby it serves as an external variable with
influences on intention and behavior that are fully
mediated by behavioral beliefs and attitudes (Ajzen
and Fishbein 1980; Eagly and Chaiken 1993, p. 205).
For example, one’s satisfaction with the reliability of
a system does not directly impact whether one will
use the system. However, beliefs about reliability cer-
tainly will affect one’s attitude toward the system,

which will shape behavioral beliefs about using the

system (e.g., ease of use). It is the system behavioral
belief (ease of use) that direclly influences attitude
toward use and, ultimately, usage. In the user satisfac-
tion literature, the mediating behavioral beliefs and
attitudes are absent, and inattention to this concep-
tual gap explains the equivocal relationship between
system satisfaction and system usage (see Figure 2).
Empirical evidence shows that object-based attitude
is generally a weak predictor of behavior (Ajzen and
Fishbein, in press). For example, one meta-analysis
found that the correlation between object-based atti-
tude and behavior averaged only 0.13, whereas the

Figure2  The User Salisfaction Research Stream Approach

Ob_)ecl-based beliefs

resemnnn
TR

System quality antecedents
(c.g., reliability, Hexibility,
integration, accessibility,
timeliness)

e

Information quality
antecedents (¢.g.,

completeness, sccuracy,
format and currency)

Information
quality

correlation between behavioral attitude and the beh-
avior itself averaged 0.54 (Kraus 1995). Thus, better
understanding the theoretical relationships within the
user satisfaction literature can help bridge such equiv-
ocal findings while offering system designers a way
to influence usage through design based on system
and information characteristics.

2.3. An Integrated Model of User Satisfaction and
Technology Acceptance

The investigation of relationships among object-based

beliefs, attitudes, and behaviors has been an ongoing

challenge in the attitude-behavior literature:

If there is one clear conclusion to be derived from the
work on the attitude-behavior relation it is that general
attitudes will usually not provide a good basis for pre-
dicting and explaining single behaviors with respect
to the attitude object; correlations of single behaviors
with general attitudes tend to be modest at best (Ajzen ~
and Fishbein, in press, p. 28).

For accurate prediction, beliefs and attitudes must be
specified in a manner that is consistent in time, target,
and context with the behavior of interest (Fishbein
and Ajzen 1975). This is often referred to as the corre-
spondence principle (Fishbein and Ajzen 1975) and is at
the core of the power of models such as TAM where
beliefs and attitudes about a specific behavior {(e.g.,
the use of an e-mail system), in a particular context
{e.g., work), at a particular point in time {(e.g., over the
next month) are found to be predictive of intention
and behavior. Given this, we begin to construct our
research model with the right half of Figure 3. Fully

Object-based aftitudes

System
satisfaction

3

Use and /or

' é Concepiual
b i &ap IT value

satisfaction
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Figure 3  The Proposed Integrated Research Mode!
Object-based Object-based Behavioral  Behavioral attitude
, beliefs attitudes beliefs
Information Information
quality > satisfaction Usefulness

,

Reliability Attitude

Flexibility

. System System
Integration quality ™ atisfaction Ease of use

Accessibility

"

Timeliness

consistent with TRA, TAM, and more recent derjva-
tions, such as the unified theory of acceptance and
use of technology (UTAUT) (Venkatesh et al. 2008),
the model proposes that IT usage (the target behavior
of interest) is driven by behavioral intention, inten-
tion is determined by atitude toward use and use-
fulness, and usefulness is a function of ease of use.
Usefulness and ease of use are both assessments of
the consequences of using a system to accomplish
some task.

More general object-based attitudes (e.g., attitudes
about a systern) also can be predictive of behav-
ioral dispositions by influencing the way in which
information about the behavior is perceived and
judged (Fazio and Olson 2003, Eagly and Chaiken
1993). Theoretically, these serve as external variables
that may determine satisfaction with an object, and
that level of satisfaction subsequently may influ-
ence beliefs about the consequences of using the
object” (Ajzen and Fishbein, in press). More specifi-
cally, Ajzen and Fishbein (1980, p. 9) note that “exter-
nal variables may influence the beliefs a person holds
or the relative importance he attaches to attitudinal
and normative considerations.”

Ajzen and Fishbein (1980) illustrate the use of object
attitudes as-external variables using the consumer
context. A consumer often forms an attitude toward
a particular brand. That attitude is shaped by beliefs
about the brand. The consumer may also develop an
attitude toward purchase of the brand, which will

be influenced by beliefs about the consequences of
purchasing the brand. Those beliefs are shaped, at
least in part, by the attitude toward the brand itself.
In the context of IT, beliefs about using the system to
accomplish a particular task will be shaped, in part,
by the attitude toward the system itself; indirectly
these beliefs will shape attitude toward use and the
eventual usage behavior.

Given this, we introduce the left side of Figure 3,
which represents the user satisfaction literature, The
far-left side of the model specifies key antecedents
to information and system quality. These specific fac-
tors are derived from a decomposition and integration
of factors identified in the user satisfaction literature
(see Table 1). Although we believe these dimensions
have general applicability, it may be that the relative
importance of each is contingent on a specific system
and setting. For system quality, reliability refers to
the dependability of system operation, flexibility refers
to the way the system adapts to changing demands

" of the user, integration refers to the way the system

allows data to be integrated from various sources,
accessibility refers to the ease with which information
can be accessed or extracted from the system, and
timeliness refers to the degree to which the system
offers timely responses to requests for information
or action.? It is important to note that each of these

2 These five antecedents to system quality were selected based on
their widespread use, representativeness, and relevance to the IT
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factors reflects perceptions of the system itself and the
way it delivers information.

Information quality is shaped by four dimensions:
completeness represents the degree to which the sys-
tem provides all necessary information; accuracy rep-
resents the user’s perception that the information is
correct; format represents the user’s perception of how
well the information is presented; and currency rep-
resents the user’s perception of the degree to which
the information is up to date® These dimensions
determine the user’s perception of the quality of the
information included in the system.

Next, we assert that information and system quality
beliefs shape attitudes about information and system
satisfaction, respectively. This is supported by the
concept from the attitude behavior literature that
beliefs about objects (in this case, systern and informa-
tion quality) are linked to attitude toward an object (in
this case, systemn and information satisfaction) (Ajzen
and Fishbein 1980}.

At this point, information and system satisfaction
represent object-based attitudes that serve as exter-
nal variables shaping behavijoral beliefs. Satisfaction
with the information produced by the system will
influence perceptions of usefulness. That is, the higher
the overall satisfaction with the information, the more
likely one will find the application of that informa-
tion useful in enhancing work performance. A similar
effect is anticipated in terms of system satisfaction.
Systemn satisfaction represents a degree of favorable-
ness with respect to the system and the mechanics of
interaction. The more satisfied one is with the system

context that will be explored in this study. This list is not necessarily
exhaustive,

3 These four antecedents to information quality were selected based
on their widespread use, representativeness, and relevance to the IT
context that will be explored in this study. This list is not necessarily
exhaustive,

4User satisfacHon instruments also refer to other categories of
object beliefs, such as service quality that could be included in this
model. However, consistent with Seddon (1997), when the focus of
the model is on the use of an application, we treat only the sys-
tem and information characteristics, rather than the broader set of
factors that might be used to evaluate satisfaction with overall IT
services. This is not to say that such factors are not important, but
rather that they are focused on the broader target of the IS function
rather than on the individual application.

itself, the more likely one is to find the system to be
easy to use.

Consistent with the notion that ease of use will
influence perceptions of usefulness, our mode] hyp-
othesizes that system satisfaction will influence infor-
mation satisfaction. Being able to effectively interact
with the system is a necessary condition to obtaining
useful information from it. Thus, an individual’s level
of satisfaction with the system is likely to influence
his or her sense of satisfaction with the information it
produces.

To summarize, our models suggest that the tech-
nology acceptance literature and the parallel user
satisfaction stream are not competing approaches to
understanding IT usage and value. Rather, they repre-
sent complementary steps in a causal chain from key
characteristics of systemn design, to beliefs and expec-
tations about outcomes that ultimately determine
usage. Next, we present a preliminary empirical test
of the proposed model to assess the aptness of the
proposed relationships. The test is based on a sample
of 465 users of data warehousing predefined report-
ing software from 7 different organizations.

3. Method

3.1. Instrument Development

The development of the survey instrument was pat-
terned after the process proposed by Moore and
Benbasat (1991}. First, groups of questions were com-
piled from validated instruments to represent each
construct, and wording was modified to fit the data
warehousing context to be studied. Next, 10 profes-
sors and graduate students sorted the 88 initial items
into 17 separate categories, identifying ambiguous
or poorly worded items. Items were removed, and
minor wording changes were made prxior to a sec-
ond round of sorting, which did not uncover fur-
ther problems. The three items that were categorized
most accurately were selected for each construct and
included in a random order on the survey instru-
ment® Each question was measured on a 7-point,
Likert-type scale, ranging from 1 {strongly disagree)
to 7 (strongly agree).

5 Only two questions were included for information satisfaction and
system satisfaction to reduce redundancy.
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The context of the survey instrument was the
success of data warehousing predefined reporting
software. Predefined reporting software was installed
and managed by the data warehousing project team
and run by users on a regular basis to provide
predetermined information. This context was chosen
because of its importance and widespread use in prac-
tice. It was hoped that widespread interest in the topic
of data warehousing would encourage individual and
corporate participation in the study.

Before implementing the survey, the instrument was
reviewed by academics and practitioners with knowl-
edge of survey design, IS success, and data warehous-
ing. Minor changes were made based on their sug-
gestions. The resulting survey was then pilot tested
using respondents from a large public university to
identify problems with the instruments’ wording,
content, format, and procedures. For this pilot test,
surveys were distributed to 250 active users of the
university’s data warehouse; 73 responded, result-
ing in a 29% response rate. Pilot participants compl-
eted the instruments and provided written comments
about length, wording, and instructions. Two of the
participants were interviewed to gain a richer under-
standing of the feedback. Each construct in the pilot
test showed internal consistency levels exceeding
0.70, as measured by Cronbach’s alpha (Nunnally
1978).

Based on the results of the pilot sample, minor mod-
ifications were made to the survey design. The final
survey included 76 items representing the 17 con-
structs identified in Figure 3, as well as a series of
demographic and self-reported usage items. The spec-
ified items, organized by construct,.are shown in
Table 2.

3.2. Sample

To obtain study participants, an e-mail announcement
was sent to members of The Data Warehousing Insti-
tute, offering a free study to assess the success of their
organization’s data warehousing data access software,
Seven organizations from a variety of industries (e.g.,
health care, consumer goods, financial services, and
government) agreed to participate. Each organization
was asked to distribute paper-based surveys to all of
the active users of its data warehouse, All surveys
were confidential; no identifying personal informa-
tion was required. At each organization, the study

contact collected the completed surveys and returned
them to the researchers. Response rates varied across
organizations (see Table 3), with an overall study
response rate of 21%, yielding 465 completed surveys.

The average age of the respondents was 42 years,
and 40% were male. The respondents had an aver-
age of 12 years tenure with their organization and
18 years average total work experience. Their posi-
tions in the organizations varied from derical to
senior management—58% were analysts; they repre-
sented different functional areas across the organiza-
tion. The demographic profile of the sample is shown
in Table 4.

The respondents were direct, voluntary users of
data warehousing predefined reporting software.
On the survey, they identified their absolute usage of
the system and their use relative to opportunity. Both
absolute and relative usage were measured using
a 1 to 7 Likert-type scale, with 1 representing low
use and 7 representing high use. The averages for
absolute usage and relative usage were 3.6 and 4,
respectively, suggesting that the respondents, on aver-
age, had a reasonable level of experience using the
data warehouse software. The standard deviations for
absolute (1.95) and relative usage (1.46) also suggest
that there was reasonable variance across the sample
in usage experience. All users accessed warehouses
that had been in place for at least six months,

4. Results

The research model was tested using partial least
squares (PLS), a structural modeling technique that
is well suited for highly complex predictive models
(Barclay et al. 1995, Chin 1998, Lohmoller 1989, Wold
and Joreskog 1982). PLS was most appropriate given
the large number of constructs that resulted when the
satisfaction and usage models were combined. PLS
Graph version 2.91 (Chin and Frye 1996) was used
for the analysis, and the bootstrap resampling method
(100 resamples) was used to determine the signifi-
cance of the paths within the structural model.

4.1. Measurement Model

The test of the measurement model includes the
estimation of internal consistency and the conver-
gent and discriminant validity of the instrument
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Tahle 2 Survey Hems and Measurement Properiies

Construct and item Mean St dev.
Completensss N
=080
Forneli = 0.94 )
e provides me with a complete set of information. 4,58 177
— produces comprehensive information. 4.88 1.70
. provides me with all the information | need. 415 1.87
Format .,
. ge= 0.39‘
Fomnell = 0.92 .
The information provided by ——— is well formatted. 493 1.68
The information provided by w— is well lald out, . 510 1.57
The information provided by —— is clearly presented on the screen, 523 1.55
Accuracy
[ 0.87
Fornell =090
— produces correct information. 514 1.60
There are few errors in the information | obtain from —., 475 1.78
The information provided by —.— is accurate. 5.04 1.68
. Currency
a=0.93 .
Fomell = 0.94
— provides me with the most recent information. 5.05 187
e produces the most current Information, 4,58 1.79
The information from — is always up to date, 4.1 177
information quality
=094
Fomnell = 0.94
Overall, | would give the information from —— high marks, 500 1.68
Overall, | would give the information provided by . a high 510 1.63
rating in terms of quality.
- In general, — provides me with high-quallty information, 51 1.61
Rellabifity
a=0.90
Fomell =093
. Operates reliably.- 510 1.73
— parforms reliably. 515 1.66
The operation of —— is dependable. 510 1.56
Accessibllity
a= 0.90
Fornell = 0.92
— allows Information to be readily accessible to me. 5.27 1.70
— fmakes information very accessible, 518 1.69
~— Makes information easy to access. ‘ 514 1.70
Flexibility
o=0.86
Fomnell = 0,90
— tan be adapted to mest a variety of needs. 428 1.98
—— can flexibly adjust to new demands or conditions., 373 1.86
e |5 versatile In addressing needs as they arise. 4.00 1.83
Integration
= 0.89
Fornelf == 0.91

e eftgetively integrates data from different areas of the company. 4,78 1.88




g2 6 H@E#FE |Z B

b4

\‘ P 5‘7 DTN .
;;.-—5“‘1;{\_!? BETZTEZHBE L= RATBI | AEER
) B s T R A skt e . o
A 100 e e i e T e B B EASEYTE
Toble 2 (cont'd.)
Gonstruct and item Mean St dev.
— pulls together information that used to come from different 5.14 177
places In the company. . -
—— effectively combines data from different areas of the company. 493 1.77
Timeliness
=080
Fomell = 0.87
it takes too long for ——— to respond o my requests, {RC) 4.26 1.80
— provides information in a timely fashion. 5.07 1.67
— Tetumns answers to my requests quickly, 4.90 172
System quality
o= 0.91 -
Fomell = 0.94
In terms of system qualily, | would rate — highly. 4.91 1.69
Overall, —— is of high quallty. 512 1.55
Overall,  would give the quality of —— a high rating. 4,97 1.82
Information satisfaction
=083 !
Fornell = 0.96
Overall, the information | get from —— is very satisfying. 4,89 1.80
| am very satisfied with the information | receive from —m—. 4,84 1.78
System satisfaction
a=092
Fomeli = 0.95 .
All things consldered, | am very satisfied with —. 4,61 1.94
Overall, my interaction with —— is very satisfying. 4,65 1.82
Atlitude
o= 089
Fomell = 0.91
Using —— is {not enjoyable/ very enjoyable}. 413 1.86
Overall, using —. is 2 {unpleasantipleasant) experience, 4.89 1.79
My atlitude toward using —— Is {very unfavorableivary favorable). 4.98 177
Intention
o= 0.57
Fomell = 0.92
Intend to use —— as a routine part of my job over the next year, 513 1.94
I intend 1o use ... at every opportunity over the next year, 4.80 1.93
{ plan to increase my use of — over the next year, 4.64 1.88
Ease of use )
a=0.85
Fomnell = 0.B9
e i g2SY t0 USE, ) 5.31 1.82
Itis easy to get — to do what | want it to do. 4,38 1.98
—— s £asy to cperate, 520 1.84
Usefulness
=082
Fomnelj==0.88
Using —— improves my abilily to make good decisions. 5.04 1.65
— allows me to get my work done more quickly. 4.84 1.80
Using — erthances my effectiveness on the job, 5.04 178

Note. RG = reverse coded.,
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Teble 3 Survey Response Rales
Surveys Response rate

Company Surveys sent* returned {percent}
A-Health cars 129 40 31
B-Packaged goods 300 92 31
C-Financial services 179 23 13
D-Health care 108 42 39
E-Public sector 1,200 172 14
F-Public sector 2N 81 28
G-Public sector &6 35 53
Overalt 2,213 465 21

*Note that this represents the number of surveys sent to each company.
We cannot be certain that all surveys sent were distributed to data ware-
house users. Thus, our effective response rate Is likely somewhat higher that
reporied here.

items. Table 2 lists the survey scales and their inter-
nal consistency reliabilities. All reliability measures
were 0.8 or higher, well above the recommended
level of 0.70, indicating adequate internal cons1stency
(Nunnally 1978).

Although some of the variable intercorrelations
were quite high (ranging from 0.36 to 0.85), the items
demonstrated satisfactory convergent and discrimi-
nant validity. Convergent validity is adequate when
constructs have an average variance extracted (AVE)
of at least 0.5 (Fornell and Larcker 1981). For satisfac-
tory discriminant validity, the AVE from the construct
should be greater than the variance shared between

Table 4  Demographic Profile of Respondents
Number Parcent
Organizational fevel:
Senior management 13 3
Middle management 95 22
First-level supervisor 48 11
Analyst . 257 58
Clerical 27 B
Functional area; )
Accounting 22 5
Finance 79 17
Human resources 22 5
Information systems 7 8
Marketing and sales 82 18
Research and development 96 21
Other 116 25
Gender:

Male 180 40
Female 270 80
Average age: 42 years
Average years at company: 12 years
Average years In workforce: 18 years

the construct and other constructs in the model
(Chin 1998). Table 5 lists the correlation matrix, with
correlations among constructs and the square root of
AVE on the diagonal. In all cases, the AVE for each
construct is larger than the correlation of that con-
struct with all other constructs in the model.

Tables  Correlations of Laten Variahles? ]
COMP ACCU FORM CGURR RELI FHEX INTE T7TIME ACGE INFO SYSQ INTN ATTI EASE USEF SYSS INFS
Completeness 0.01
Accuracy 0.55 087
Format 066 049 089
Currency 057 051 048 082
Rellability 062 088 057 059 0.90
Flexibility 068 033 047 039 041 086
Integration 069 046 050 050 050 048 088
Timellriess 055 054 052 054 074 046 047 083
Accessibility 070 054 063 055 070 054 067 070 0489
info. quality 074 076 084 084 073 054 063 060 071 081
Systemquality 077 071 071 056 077 057 057 067 077 085 091
Intention 053 036 040 039 041 051 042 043 058 053 057 089
Atitude 059 049 063 044 061 056 047 062 070 067 075 071 087
Easg of use 052 042 057 038 058 044 045 056 088 058 069 055 077 085
Usefulness 060 047 049 047 054 054 053 052 066 069 067 076 075 065 085
System sat. 088 041 060 038 080 058 051 057 071 067 075 067 084 081 077 085
Informationsat. 067 052 055 051 061 058 054 054 063 077 072 066 073 061 080 079 086

*All correlations are significant at the 0,001 fevel,
tDiagonal elements are the square root of AVE. These values should exceed the Interconstruct corrslations for adequats discriminant validity, This condition

is satisfied for each construct.
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Discriminant and convergent validity are further
confirmed when individual items load above 0.50 on
their associated factors and when the loadings within
construct are higher than those across constructs. The
appendix contains the loadings and cross-loadings for
items used in this study; all items loaded on their
constructs as expected. Furthermore, all items loaded
more highly on their construct than they loaded on
any other construct, and in all but one case among
the 784 cross loadings the differences were greater
than 0.10.

Finally, the data were tested for multicollinearity.
We tested for all potential collinearity problems that
had more than one predictor construct. In all cases,
the varjance inflation factor was below the 5.0 level.

4.2, Structural Model

The test of the structural model includes estimates
of the path coefficients, which indicate the strengths
of the relationships between the dependent and inde-
pendent variables, and the R? values, which represent

Figure4  Research Model Resulls

the amount of variance explained by the independent
variables, Together, the R? and the path coefficients
(loadings and significance) indicate how well the data
support the hypothesized model.

Figure 4 shows the results of the test of the hypoth-
esized structural model. The paths specified in TAM
are all significant with the direct and indirect effects
of usefulness, ease of use, and attitude toward use
accounting for 59% of the variance in intention. As
predicted, information satisfaction (0.64) had a signifi-
cant influence on perceived usefulness and accounted
for 67% of the variance in perceived usefulness. Sys-
tem satisfaction (0.81) had a significant influence on
perceived ease of use and accounted for 65% of the
variance in perceived ease of use.

As expectdd, information quality (0.43) and sys-
tern satisfaction (0.50) had significant influences on
information satisfaction, accounting for 71% of the
variance in that measure. System quality also was a
significant determinant of system satisfaction (0.73),
accounting for 53% of its variance. Completeness

(0.33), accuracy (0.45), format (0.14), and currency
(0.11) were all significantly related to information
quality and collectively account for 75% of the vari-
ance in information quality. Reliability (0.38), flexi-
bility (0.14), integration (0.10), and accessibility (0.36)
were all significant determinants of system quality,
whereas timeliness was not. The first three factors
together accounted for 74% of the variance in system
quality.

*p<0.05 *p<0.0f; *p<0.001

Completeness o\?} )
D5,
Accuracy .
Information - Usefulness
o3t quality ’ 0.64™ 047"
Format R2=0715 =067
Qf:‘ 04277
Currency Information .
satisfaction . Intcaticn
2 o 2
=071 oas o35 ] £°= 0.59
030" - N
System Attitude
Reliability . satisfaction K= 069
S R=053
Flexibility N, A 073" 050"
081"
0.10° System
Integration > quality Ease of usc
“ﬁé R2 =0.74 Rz =0.65
Accessibility »
&
Timeliness
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Above the Clouds: A Berkeley View of Cloud Computing

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia
(Comments should be addressed to abovetheclouds @cs.berkeley.edu)

UC Berkeley Reliable Adaptive Distributed Systems Laboratory *
http://radlab.cs.berkeley.edw/

February 10, 2009

KEYWORDS: Cloud Computing, Utility Computing, Internet Datacenters, Distributed System Economics

1 Executive Sumrmary

Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the
IT industry, making software even more attractive as a service and shaping the Wway IT hardware is designed and
purchased. Developers with innovative ideas for new Internet services no longer require the large capital outlays
in hardware to deploy their service or-the human expense fo operate it. They need not be concerned about over-
provisicning for a service whose popularity does not meet their predictions, thus wasting costly resources, or under-
provisioning for one that becomes wildly-popular, thus missing potential customers and revenue. Moreover, companies
with large batch-oriented tasks can get results as quickly as their programs can scale, since using 1000 servers for one
hour costs no more than using one server for 1000 hours. This elasticity of resources, thhout paying a premium for
large scale, is unprecedented in the history of IT.

Cloud Computing refers to both the applications delivered as services over the Internet and the hardware and
systems software in the datacenters that provide those services. The services themselves have long been referred to as
Software as a Service (SaaS). The datacenter hardware and software is what we will call a Cloud. When a Cloud is
made available in a pay-as-you-go manner to the ‘general public, we call it a Public Cloud; the service being sold is
Urility Computing. ‘We use the term Private Cloud to refer to internal datacenters of a business or other organization,
not made available to the general public. Thus, Cloud Computing is the sum of Saa$ and Utility Computing, but does ,
not include Private Clouds. People can be users or providers of SaaS, or users or providers of Utility Computing. We
focus on SaaS Providers (Cloud Users) and Cloud Providers, which have received less attention than SaaS Users.

From a hardware point of view, three aspects are new in Cloud Computing.

L. The illusion of infinite computing resources available on demanel, thereby eliminating the need for Cloud Com-
puting users to plan far ahead for provisioning.

2. The elimination of an up-front commitment by Cloud users, thereby allowing companies to start small and
increase hardware resources only when there is an increase in their needs,

3. The ability to pay for use of computing resources on a short-term basis as needed (e.g., processors by the hour
and storage by the day) and release them as needed, thereby rewarding conservation by letting machines and
storage go when they are no longer useful.

We argue that the construction and operation of extremely large-scale, commodity-computer datacenters at low-
cost locations was the key necessary enabler of Cloud Computing, for they uncovered the factors of 5 to 7 decrease
in cost of electricity, network bandwidth, operations, software, and hardware available at these very large economies

*The RAD Lab’s existence is due to the generous support of the founding members Google, Microsoft, and Sun Microsystems and of the affiliate
members Amazon Web Services, Cisco Systems, Facebook, Hewletw-Packard, IBM, NEC, Network Appliance, Oracle, Siemens, and VMware; by
matching funds from the State of California’s MICRO program (grants 06-152, 07-010, 06-148, 07-012, 06-146, 07-009, 06-147, 07-013, 06-149,
06-150, and 07-008) and the University of California Industry/University Cooperative Research Program (UC Discovery) grant COMO07-10240; and
by the National Science Foundation (grant #CNS-0509559).
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of scale. These factors, combined with statistical multiplexing to increase utilization compared a private cloud, meant
that cloud computing could offer services below the costs of 2 medium-sized datacenter and yet still make a good
profit.
Any application needs a model of computation, a model of storage, and a model of communication. The statistical
multiplexing necessary to achieve elasticity and the illusion of infinite capacity requires each of these resources to
be virtualized to hide the implementation of how they are multiplexed and shared. Our view is that different utility
computing offerings will be distinguished based on the level of abstraction presented to the programmer and the level
of management of the resources.
Amazon EC2 is at one end of the spectrum. An EC2 instance looks much like physical hardware, and users can
control nearly the entire software stack, from the kernel upwards. This low level makes it inherently difficult for
Amazon to offer automatic scalability and failover, because the semantics associated with replication and other state
management issues are highly application-dependent. At the other extreme of the spectrum are application domain-
specific platforms such as Google AppEngine. AppEngine is targeted exclusively at traditional web applications,
enforcing an application structure of clean separation between a stateless computation tier and a stateful storage tier.
AppEngine’s impressive automatic scaling and high-availability mechanisms, and the proprietary MegaStore data
storage available to AppEngine applications, all rely on these constraints. Applications for Microsoft’s Azure are
written using the .NET libraries, and compiled to the Common Language Runtime, a language-independent managed
environment. Thus, Azuie is intermediate between application frameworks like AppEngine and hardware virtual
machines like EC2.
When is Utility Computing preferable to running a Private Cloud? A first case is when demand for a service varies
with time. Provisioning a data center for the peak load it must sustain a few days per month leads to underutilization
at other times, for example. Instead, Cloud Computing lets an organization pay by the hour for coniputing resources,
potentially leading to cost savings even if the hourly rate to rent a machine from a cloud provider is higher than the
rate to own one. A second case is when demand is unknown in advance. For example, a web startup will need to
support a spike in demand when it becomes popular, followed potentially by a reduction once some of the visitors turn
away. Finally, organizations that perform batch analytics can use the “cost associativity” of cloud computing to finish
computations faster: using 1000 EC2 machines for 1 hour costs the same as using | machine for 1000 hours. For the
first case of a web business with varying demand over time and revenue proportional to user hours, we have captured
the tradeotf in the equation below.
UserHoiirs. e O > TserH . . Cdﬂdatacenter 1)
sertHoirsy g, g % (revenue — Costyyg,q) = UserHours goqcenter X (revenue — m) (
The left-hand side multiplies the net revenue per user-hour by the number of user-hours, giving the expected profit
from using Cloud Computing. The right-hand side performs the same calculation for a fixed-capacity datacenter
by factoring in the average utilization, including nonpeak workloads, of the datacenter. Whichever side is greater
represents the opportunity for higher profit.
Table 1 below previews our ranked list of critical obstacles to growth of Cloud Computing in Section 7. The first
three concern adoption, the next five affect growth, and the last two are policy and business obstacles. Each obstacle is
paired with an opportunity, ranging from product development to research projects, which can overcome that obstacle. .
We predict Cloud Computing will grow, so developers should take it into account. All levels should aim at hori-
" zontal scalability of virtual machines over the efficiency on a single VM. In addition

1. Applications Software needs to both scale down rapidly as well as scale up, which is a new requirement. Such
software also needs a pay-for-use licensing model to match needs of Cloud Computing.

2, Infrastructure Software needs to bie aware that it is no longer running on bare metal but on VMs. Moreover, it
needs to have billing built in from the beginning,

3. Hardware Systems should be designed at the scale of a container (at least a dozen racks), which will be is
the minimum purchase size. Cost of operation will match performance and cost of purchase in importance,
rewarding energy proportionality such as by putting idle portions of the memory, disk, and network into low
power mode. Processors should work well with VMs, flash memory should be added to the memory hierarchy,
and LAN switches and WAN routers must improve in bandwidth and cost.

2 Cloud Computing: An Old Idea Whose Time Has (Finally) Come

Cloud Conputing is a new term for a long-held dream of computing as a utility [35], which has recently emerged as
a cormercial reality. Cloud Computing is likely to have the same impact on software that foundries have-had on the
2

a—



http:multiplex.ed

= »‘i]- 230 m

g% ERKEBHE KB FRATH | BIEER
CIAY 100. Eﬁﬁﬁ’r@iﬂ%ﬁ%‘iﬁm B B AR

Table 1: Quick Preview of Top 10 Obstacles to and Opportunities for Growth of Cloud Computing.

Obstacle Opportunity
1 | Availability of Service Use Multiple Cloud Providers; Use Elasticity to Prevent DDOS
2 | Data Lock-In Standardize APIs; Compatible SW to enable Surge Computing
3 [ Data Confidentiality and Auditability | Deploy Encryption, VLANS, Firewalls; Geographical Data Storage
4 | Data Transfer Bottlenecks FedExing Disks; Data Backup/Archival; Higher BW Switches
5 | Performance Unpredictability . | Improved VM Support; Flash Memory; Gang Schedule VMs
6 | Scalable Storage Invent Scalable Store
7 | Bugs in Large Distributed Systems .| Invent Debugger that relies on st tributed VMs
8 | Scaling Quickly Invent Auto-Scaler that relies on ML; Snapshots for Conservation
9 | Reputation Fate Sharing " Offer reputation-guarding services like those for email .
10 | Software Licensing Pay-for-use licenses; Bulk use sales

hardware industry. At one time, leading hardware companies required a captive semiconductor fabrication facility,
and compames had to be large enough to afford to build and operate it economically. However, processing equipment
doubled in price every technalocy generauon A semiconductor fabrication line costs over $3B today, so only a handful
of major “merchant” companies with very high chip volumes, such as Intel and Samsung, can still justify owning and
operating their own fabrication lines: This motivated the rise of semiconductor foundnes that build chips for others,
such as Taiwan Semiconductor Manufacturing Company (TSMC). Foundries enable “fab-less” semiconductor chip
companies whose value is in innovative chip design: A company such as nVidia can now be successful in the chip
business without the capital, operational expenses, and risks associated with owaing a state-of-the-art fabrication
line. Conversély, companies with fabrication lines can time-multiplex their use among the products of many. fab-less
- companies, to lower the risk of not having enough successful products to amortizé operational costs. Similarly, the
advantages of the economy of scale-and statistical multiplexing may ultimately lead to a handful of Cloud Computing
providers who can-amortize the cost of their large datacenters over the products of many “datacenter-less” companies.
Cloud Computing has been talked about {10], blogged about [13, 25], written about [15, 37, 38] and been featured
in the title of workshops, conferences, and even magazines, Nevertheless, confusion remains about exactly what itis
and when it’s useful, causing Oracle’s CEO to vent his frustration:

The interesting thing about Cloiid Computing is that we've redefined Cloud Computing to include ev-
erything that we already do. ... I don’t understand what we would do differently in the light of Cloud
Computing other than change the wording of some of our ads,

L Larry Ellison, quoted in the Walil Street Journal, September 26, 2008

These remarks are echoed more mildly by Hewlett-Packard's Vice President of European Software Sales:

Alot of people are jumping on the [cloud] bandwagon, but I have not heard two peoplé say the same thing
about it, There are multiple definitions out there of “the cloud.”

Andy Isherwood, quoted in ZDner News, December 11, 2008

Richard Stailman, known for hi§ advocacy of “free software”, thinks Cloud Compiting is a trap for users—if
applications and data are managed “in the cloud”, users might become dependent on proprietary systems whose costs
will escalate or whose terms of service might be changed unilaterally and adversely:

It's stupidity. It's worse than stupidity: it's a marketing hype campaign. Somebody is saying this is
inevitable — and whenever you hear somebody saying that, it's very likely to be a set of businesses
campaigning to make it true.

Richard Stallman, quoted in The Guardian, September 29, 2008

Our coal in this paper to clarify terms, provide simple formulas to quantify cémparisons between of cloud and
conventional Computing, and identify the top technical and non-technical obstacles and opportunities of Cloud Com-
puting. Our view is shaped in part by working since 20035 in the UC Berkeley RAD Lab and in part as users of Amazon
Web Services since January 2008 in conducting our research and our teaching, The RAD Lab's research agenda is to
invent technology that leverages machine learning to help automate the operation of datacenters for scalable Internet
services. We spent six months brainstorming about Cloud Computing, leading to this paper that tries to answer the
following questions:

3




TV RTLR JRY WS LI, e
* N TRy

Faw3lm

BN/ A | RAE : BEER
TN 100 BEEBIIHEEERRAE B E RS

+ What is Cloud Computing, and how is it different from previous paradigm shifts such as Software asa Service
{SaaS)? - .

* Why is Cloud Compitting poised to take off now, whereas previous attempts have foundered? ’

» What does it take to become a Cloud Computing provider, and why wpuld a company consider becoming one?

« What new opportunities are either enabled by or potential drivers of Cloud Computing?

+ How might we classify current Cloud Computing offerings across a spectrum, and how do the technical and
business challenges differ depending on where in the spectrum a particular offering lies? '

* What, if any, are the new economic models enabled by Cloud Computing, and how can a service opérator decide
whether to move to the cloud or stay in a private datacenter?

* What are the top 10 obstacles to the success of Cloud Computing—and the corresponding top 10 opportumues
available for overcoming the obstacles?

» What changes should be made to the design of future apphcatxons software, infrastructure software, and hard-
ware to match the needs and opportunities of Cloud Computing?

'3 What is Cloud Computing?

Cloud Computing refers to both the applications delivered as services over the Interet and the hardware and systems
software in the datacenters that provide those services. The services themselves have long been referred to as Sgftware
as a Service (SaaS), so we use that term. The datacenter hardware and software is what we will call a Cloud.

When a Cloud is made available in a pay-as-you-go manner to the public, we call it a Public Cloud; the service
bBeingsold is Urility Computing. Current examples of public Utility Computing include Amazon Web Services, Google
AppEngine, and Microsoft Azure. We use the term Private Cloud to refer to intemal datacenters of a business or
other organization that are not made available to the public, Thus, Cloud Computing is the sum of SaaS and Utility
Computing, but does not normally include Private Clouds. We'll generally use Cloud Computing, replacing it with
one of the other terms only when clarity demands it.- Figure 1 shows the roles of the people as users or providers of
these layers of Cloud Computing, and we’ll use those terms to help make our argursents clear,

- The advantages of SaaS to both end users and service providers are well understood. Service providers enjoy
gready sxmphﬁed software installation and maintenance and centralized control over versioning; end users can access
the service “anytime, anywhere”, share data and collaborate more easily, and keep their data stored safely in the
infrastructure. Cloud Computing does not change these arguments, but it does give more. application providers the
choice of deploying their product as SaaS without provisioning a datacenter:-just as the emergence of semiconductor
foundries gave chip companies the opportunity to design and sell chips without owning a fab, Cloud Computing allows ,
deploying SaaS——and scaling on demand—without building or provisioning a datacenter. Analogously to how SaaS
allows the user to offload some problems to the SaaS provider, the Saa$S provider can now offload some of his problems
to the Cloud Computing provider. From now on, we will focus on issues related to the potential SaaS Provider (Cloud .
User) and to the Cloud Providers, which have received less attention,

We will eschew terminology such as “X as a service (XaaS)"; values of X we have seen in print include Infrastruc-
ture, Hardware, and Platform, but we were uriable.to agree even among ourselves what the precise differences among
them might be.! (We are using Endnotes instead of footnotes. Go to page 20 at the end of paper to read the notes,
which have more details.) Instead, we present a simple classification of Utility Computing services in Section 5 that
focuses on the tradeoffs among programmer convenience, flexibility, and portablhty, from both the cloud provider’s
and the cloud user’s point of view.

From a hardware point of view, three aspects are new in Cloud Computing [42]:

1. The illusion of infinite computing resources available on demand, thereby eliminating the need for Cloud Com-
puting users to plan far ahead for provisioning;

2. The elimination of an up-front commitment by Cloud users, thereby allowing companies to start small and
increase hardware resources only when there is an increase in their needs; and .

3. The ability to pay for use of computing resources on a short-term basis as needed (e.g., processors by the hour
and storage by the day) and release them as needed, thereby rewarding counservation by letting machines and
storage go when they are no longer useful.

i
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Figure 1; Users and Providers of Cloud Computing. The benefits of SaaS to both SaaS users and SaaS providers are
well documented, so we focus on Cloud Computing’s effects on Cloud Providers and SaaS Providers/Cloud users. The
top level can be recursive, in that SaaS providers can also be a SaaS users. For example, a mashup provider of rental
maps might be a user of the Craigslist and Google maps services.

‘We. will argue that all three are important to the technical and economic changes made possible by Cloud Com-
puting. Indeed, past efforts at utility computing failed, and we note that in each case one or two of these three critical
charactetistics were missing. For example, Intel Computing Services in 2000-2001 required negotiating a contract and
longer-term use than per hour,

A5 a successful example, Elastic Compute Cloud (EC2) from Amazon Web Services (AWS) sells 1.0-GHz x86
ISA “slices” for 10 cents per hour, and a new “slice”, or instance, can be added in Z-to 5 minutes. Amazon’s-Scalable
Storage Service (S3) charges $0.12 to $0.15 per gigabyte-mouth, with additional bandwidth charges of $0.10 to $0.15
per gigabyte to fnove data in to and out of AWS over the Internet. Amazon’s bet is that by statistically multiplexing
multiple instances-onto-a single pliysical box, that box cai be simultaneously rented to many customers who will not
in general interfere withreach others® usage (see Section 7).

While the-attraction to Cloud Computing users (Saa$ providers) is clear, who would become a Cloud Compunng
provider, and why? To begin with, realizing the economies of scale afforded by statistical multiplexing and bulk
purchasing requires the construction of extremely large datacenters.

Building, provisioning, and launching such a facility is a hundred-million-dollar undertaking. However, because of
the phenomenal growth of Web services through the early 2000's, many large Internet companies, including Amazon,
eBay, Google, Microsoft and others, were already doing so. Equally important, these companies also had to develop
scalable software infrastructure (such as MapReduce, the Google File System, BigTable, and Dynamo {16, 20, 14, 17])
and the operational expertise to armor their datacenters against potential physical and electronic attacks,

Therefore, a necessary but not sufficient condition for a company to become a Cloud Computing provider is that
it must have existing investments not only in very large datacenters, but also in large-scale software infrastructure
and operauonal expertise required to run them. Given these condmons a variety of factors might influence these
companies to become Cloud Computing providers:

1. Make a lot of money. Although 10 cents per server-hour seems low, Table 2 summarizes James Hamilton’s
estimates [23] that very large datacenters (tens of thousands of computers) can purchase hardware, network
bandwidth, and power for 1/5 to 1/7 the prices offered to a medium-sized {(hundreds or thousands of computers)
datacenter. Further, the fixed costs of software development and deployment can be amortized over many more
machines. Others estimate the price advantage as a factor of 3 to 5 [37, 10]. Thus, a sufficiently large company
could leverage these economies of scale to offer a service well below the costs of a medium-sized company and
still make a tidy profit.

2. Leverage existing investment. Adding Cloud Computing services on top of existing infrastructure provides a
new revenue stream at (ideally) low incremental cost, helping to amortize the large investments of datacenters.
Indeed, according to Werner Vogels, Amazon’s CTO, many Amazon Web Services technologies were initially
develdped for Amazon’s internal operations [42].

3. Defend a franchise. As conventional server and enterprise applications embrace Cloud Computing, vendors
with an established franchise in those applications would be motivated to provide a cloud option of their own.
For example, Microsoft Azure provides an immediate path for migrating existing customers of Microsoft enter-
prise applications to a cloud environment. .
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Table 2: Economies of scale in 2006 for medium-sized datacenter {=1000 servers) vs. very large datacenter {50,000
servers). [24] )

Technology Cost in Medium-sized DC Cost in Very Large DC Ratio
Network $95 per Mbit/secimonth $13 per Mbit/sec/month 7.1
Storage $2.20 per GByte / month $0.40 per GByte / month 5.7
Administration | =140 Servers / Administrator | >1000 Servers / Administrator | 7.1

Table 3: Price of kilowatt-hours of electricity by region [7].

Price per KWH | Where Possible Reasons Why
3.6¢ Idaho Hydroelectric power; not sent long distance
10.0¢ California | Electricity transmitted long distance over the grid;
limited transmission lines in Bay Area; no coal
fired electricity allowed in California.
18.0¢ Hawaii Must ship fuel to generate electricity

4. Attack an incumbént, A company with the requisite datacenter and software resources might want to establish a
beachhead in this space before a single “800 pound gorilla” emerges, Google AppEngine provides an alternative
path to cloud deployment whose appeal lies in its automation of many of the scalability and load balancing
features that developers might otherwise have to build for themselves. !

5. Leverage enstomer relationships. IT service organizations such as IBM Global Services have extensive cus-
tomer relationships through their service offerings. Providing a branded Cloud Computing offering gives those
customers an anxiety-free migration path that preserves both parties’ investments in the customer relationship.

6. Become a platform. Facebook’s initiative to enable plug-in applications i§ a great fit for cloud computing, as
we will see, and indeed one infrastructure provider for Facebook plug-in applications is Joyent, a cloud provider.
-Yet Facebook's motivation was to make their social-networking application a new development platform.

Several Cloud Computing (and conventional computing) datacenters are being built in seemingly surprising loca-
tions, such as Quincy, Washington (Google, Microsoit, Yahoo!, and others) and San Antonid, Texas (Microsoft, US
National Security Agency, others). The motivation behind choosing these locales is that the costs for electricity, cool-
ing, labor, property purchase costs, and taxes are geographically variable, and of these costs, electricity and cooling
alone can account for a third of the costs of the datacenter. Table 3 shows the cost of electricity in different locales [10].
Physics tells us it’s easier to ship photons than electrons; that is, it’s cheaper to ship data over fiber optic cables than
to ship electricity over high-voltage transmission lines, )

4 Clouds in a Perfect Storm: Why Now, Not Then?

Although we argue that the construction and operation of extremely large scale commodity-computer datacenters was
the key necessary enalgler of Cloud Computing, additional technology trends and new business models also played
a key role in making it a reality this time around. Once Cloud Computing was “off the ground,” new apphcauon
opportumttes and usage models were discovered that would not have made sense previously.

4.1 New Technology Trends and Business Models

Accompanying the emergence of Web 2.0 was a shift from “high-touch, high-margin, high-commitment” provisioning
of service “low-touch, low-margin, low-commitment” self-service. For example, in Web 1.0, accepting credit card
payments from strangers required a contractual arrangement with a payment processing service such as VeriSign or
Authorize.net; the arrangement was part of a larger business relationship, making it onerous for an individual or a very
small business to accept credit cards online. With the emergence of PayPal, however, any individual can accept credit
card payments with no contract, no long-term commitment, and only modest pay-as-you-go transaction fees. The level
of “touch” (customer support and relationship management) provided by these services is minimal to nonexistent, but
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the fact that the services are now within reach of individuals seems to make this less important. Similarly, individuals’
Web pages can now use Google AdSense to realize revenue from ads, rather than setting up a relationship with an
ad placement company, such DoubleClick (now acquired by Google). Those ads can provide the business model for
Wed 2.0 apps as well. Individuals can distribute Web content using Amazon CloudFront rather than establishing a
relationship with a content distribution network such as Akamai.

Amazon Web Services capitalized on this insight in 2006 by providing pay-as-you-go computing with no contract:
all customers need is a credit card. A second innovation was selling hardware-level virtual machines cycles, allowing
customers to choose their own software stack without disrupting each other while sharing the same hardware and
thereby lowering costs further.

4.2 New Application Opportunities

While we have yet to see fundamentally new types of applications enabled by Cloud Computing, we believe that
several important classes of existing applications will become even more compelling with Cloud Computing and
contribute further to its momentum, When Jim Gray examined technological trends in 2003 [21], he concluded that
economic necessity mandates putting the data near the application, since the cost of wide-area networking has fallen
more slowly (and remains relatively higher) than all other IT hardware costs. Although hardware costs have changed
since Gray’s analysis, his idea of this “breakeven point” has not. Although we defer a more. thorough discussion of
Cloud Computing economics to Section 6, we use Gray’s insight in examining what kinds of applications represent
particularly good opportunities and drivers for Cloud Computing.

Mobile interactive applications. Tim O’Reilly believes that “the future belongs to services that respond in real
time to information provided either by their users or by nonhuman sensors.” [38] Such services will be attracted to
the cloud not only because they must be highly available, but also because these services generally rely on large data
sets that are most conveniently hosted iri large datacenters. This is especially the case for services that combine two or
more data sources or other services, e.g., mashups. While not all mobile devices enjoy connectivity to the cloud 100%
of the time, the challenge of disconnected operation has been addressed successfully in specific application domains,
2 s0 we do not see this as a significant-obstacle to the appeal of mobile applications.

Parallel bateh processing. Although thus far we have concentrated on using Cloud Computing for interactive
SaaS, Cloud Computing presents a unique oppor:tuuity for batch-processing and analytics jobs that analyze terabytes
of data and can take hours to finish. If there is enough data parallelism in the application, users can take advantage
of the cloud’s new “cost associativity”: using hundreds of computers for a short time costs the same as using a few
computers for a long time. For example, Peter Harkins, a Senior Engincer at The Washington Post, used 200 EC2
instances (1,407 server hours) to convert 17,481 pages of Hillary Clinton’s travel documents into a form more friendly
to use on the WWW within nine hours after they were released [3]. Programming abstractions such as Google's
MapReduce [16] and its open-source counterpart Hadoop {11] allow programmers to express such tasks while hiding
the operational complexity of choreographing parailel execution across hundreds of Cloud Computing servers. Indeed,
Cloudera [1] is pursuing commercial opportunities in this space. Again, using Gray's insight, the cost/benefit analysis
must weigh the cost of moving large datasets into the cloud against the benefit of potential speedup in the data analysis.
When we return to economic models later, we speculate that part of Amazon’s motivation to host large public datasets
for free [8] may be to mitigate the cost side of this analysis and thereby attract users to purchase Cloud Computing
cycles near this data,

" The rise of analyties. A special case of compute-intensive batch processing is business analytics, While the large
database industry was originally dominated by transaction processing, that demand is leveling off. A growing share
of computing resources is now spent on understanding customers, supply chains, buying habits, ranking, and so on.
Hence, while oaline transaction volumes will continue to grow slowly, decision support is growing rapidly, shifting
the resource balance in database processing from transactions to business analytics.

Extension of compute-intensive desktop spplications. The latest versions of the mathematics software packages
Matlab and Mathernatica are capable of using Cloud Computing to perform expensive evaluations, Other desktop
applications might similarly benet from seamless extension into the cloud, Again, a reasonable test is comparing the
cost of computing in the Cloud plus the cost of moving data in and out of the Cloud to the time savings from using
the Cloud. Symbolic mathematics involves a great deal of computing per unit of data, making it 2 domain worth
investigating. An interesting alternative model might be to keep the data in the cloud and rely on having sufficient
bandwidth to enable suitable visualization and a respousive GUI back to the human user. Offiine image rendering or 3D
animation might be a similar example: given a compact description of the objects in a 3D scene and the characteristics
of the lighting sources, rendering the image is an embarrassingly parallel task with a high computation-to-bytes ratio.

“Earthbound” applications. Some applications that would otherwise be good candidates for the cloiad’s elasticity
and parallelism may be thwarted by data movement costs, the fundamental latency limits of getting into and out of the
cloud, or both, For example, while the analytics associated with making long-term financial decisions are appropriate
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for the Cloud, stock trading that requires microsecond precision is not. Until the cost {and possibly latency) of wide-
area data transfer decrease (see Section 7), such applications may be less obvious candidates for the cloud.

5 Classes of Utility Computing

Any application needs a model of computation, a model of storage and, assuming the application is even trivially
distributed, a model of comffunication. The statistical multiplexing necessary to achieve elasticity and the illusion
of infinite capacity requires resources to be virtualized, so that the implementation of how they are multiplexed and
shared can be hidden from the programmer. Our view is that diffefent utility computing offerings will be distinguished
based on the level of abstraction presented to the programmer and the level of management of the resources.

Amazon EC2 is at one end of the specttum. Ap EC2 instance looks much like physical hardware, and users
can control nearly the entire software stack, from the kemel upwards. The API exposed is “thin™: a few dozen
API calls to request and configure the virtualized hardware, There is no a priori limit on the kinds of applications
that can be hosted; the low level of virtualization—raw CPU cycles, block-device storage, IP-level connectivity—
allow developers to code whatever they want. On the other hand, this makes it inherently difficult for Amazon to
offer automatic scalability and failover, because the semantics associated with replication and other state management
issues are highly application-dependent,-

AWS does offer a number of higher-level managed services, including several different managed storage services
for use in conjunction with EC2, such as SimpleDB. However, these offerings have higher latency and nonstandard
APT's, and our understanding is that they are not as widely used as other parts of AWS.

At the other extreme of the spectrumn are application domain-specific platforms such as Google AppEngine and
Force.com, the SalesForce business software development platform, AppEngine is targeted exclusively at traditional
web applications, enforcing an application structure of clean separdtion between g stateless computation tier and a
statefil storage tier. Furthermore, AppEngine applications are expected to be request-reply based, and as such they
are severely rationed in how much CPU time they can use in servicing a particular request. AppEngine’s impressive
automatic scaling and high-availability mechanisms, and the proprietary MegaStore (based on BigTable) data storage
available to AppEngine applications, all rely on these constraints, Thus, AppEngine is not suitable for general-purpose
computing. Similarly, Force.com is designed to support business applications that run against the salesforce.com
database, and nothing else.

Microsoft's Azure is an intermediate point on this spectrum of flexibility vs, programmer convenieficé, Azure
applications are written using the NET libraries, and compiled to the Common Language Runtime, a language-
independent managed envitonment. The system supports general-purpose computing; rather than a single category
of application. -Users get a choice of language, but cannot control the underlying operating system or runtime. The
libraries provide a degree of automatic network configuration and failover/scalability, but require the developer to
declaratively specify some application properties in order to do so. Thus, Azure is intermediate between complete
application frameworks like AppEngine on the one hand, and hardware virtual machines like EC2 on the other. )

Table 4 summarizes how these three classes virtualize computation, storage, and networking, The scattershot
offerings of scalable storage suggest that scalable storage with an API comparable in richness to SQL remains an open
research problem (see Section 7). Amazon has begun offering Oracle databases hosted on AWS, but the economics
and licensing model of this product makes it a less natural fit for Cloud Computing,

Will one model beat out the others in the Cloud Computing space? We can draw an analogy with programming
languages and frameworks. Low-level languages such as C and assembly language allow fine control and close
communication with the bare metal, but if the developer is writing a Web application, the mechanics of managing
sockets, dispatching requests, and 50 on are curnbersome and tedious to code, even with good libraries. On the other
hand, high-level frameworks such as Ruby on Rails make these mechauies invisible to the programmer, but are only
useful if the application readily fits the request/reply structure and the abstractions provided by Rails; any deviation
requires diving into the framework at best, and may be awkward to code. No reasonable Ruby developer would argue
against the superiority of C for certain tasks, and vice versa. Correspondingly, we believe different tasks will result in
demand for different classes of utility computing.

Continuing the language analogy, just as high-level languages can be implemented in lower-level ones, highly-
managed cloud platforms can be hosted on top of less-managed ones. For example, AppEngine could be hosted on
top of Azure or EC2; Azure could be hosted on top of EC2. Of course, AppEngine and Azure each offer proprietary
features (AppEngine’s scaling, failover and MegaStore data storage) or large, complex API's (Azure's .NET libraries)
that have no free implementation, so any attempt to “clone” AppEngine or Azure would require re-implementing those
features or API's—a formidable challenge.
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Table 4: Examples of Cloud Computing vendors and how each provides virtualized resources (computation, storage,
networking) and ensures scalability and high availability of the resources,

Amazon Web Services Microsoft Azure Google AppEngine
Computation » x86 Instruction Set Architecture | » Microsoft Common Lan- | » Predefined application
model (VM) (ISA) via Xen VM guage Runtime (CLR) VM; | structure and framework;
¢ Computation elasticity allows = common intermediate form | programmer-provided “han-
scalability, but developer mustbuild | executed in managed envi- | dlers” written in Python,
the machinery, or third party VAR | ronment all persistent state stored in
‘such as RightScale must provide it | » Machines are provi- | MegaStore (outside Python
sioned based on declarative | code)
descriptions {(e.g.  which | « Automatic scaling up and
“roles” can be replicated); | down of computation and
automatic load balancing storage; network and server
failover; all consistent with
' 3-tier Web app structure
Storage model » Range of models from block store | « SQL Data Services (re- | sMegaStore/BigTable
(EBS) to augmented key/blob store | stricted view of SQL Server)
{SimpleDB) s Azure storage service
» Automatic scaling varies from no
scaling or sharing (EBS) to fully au-
tomatic (SimpleDB, §3), depending
on which model used
o Consistency guarantees vary
widely depending on which model
used
e APIs vary from standardized
{EBS) to proprietary
Networking » Declarative specification of IP- | » Awomatic based on pro- | « Fixed topology to ac-
model level topology; internal placement | grammer’s declarative de- | commodate 3-tier Web app
details concealed scriptions of app compo- | structure
« Security Groups enable restricting | nents (roles) ¢ Scaling up and down is
which nodes may communicate - antomatic and programmer-
¢ Availability zones provide ab- invisible
straction of independent network
failure
» Elastic IP addresses provide per-
sistently routable network name
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¢ Cloud Computing Economics
In this section we make some observations about Cloud Computing economic models:

» In deciding whether hosting a service in the cloud makes sense over the long term, we argue that the fine-
grained economic models enabled by Cloud Computing make tradecff decisions more fluid, and in particular
the elasticity offered by clouds serves to transfer risk.

= As well, although hardware resource costs continue to decline, they do so at variable rates; for example, com-
_puting and storage costs are falling faster than WAN costs. Cloud Computing can track these changes—and
potennally pass them through to the customer—more effectively than building cne's own datacenter, resulting

in a closer match of expenditure to actual resource usage. ;

s In making the decision about whether to move an existing service to the cloud, one must additionally examine the
expected average and peak resource utilization, especially if the application may have highly variable spikes in
resource demand; the practical limits on real-world utilization of purchased equipment; and various operational
costs that vary depending on the type of cloud environment being considered.

6.1 Elasticity: Shifting the Risk ‘

Although the economic appeal of Cloud Computing is often described as “converting capital expenses to operating
expenses” (CapEx to OpEx), we believe the phrase “pay as you go” more directly captures the economic benefit to
the buyer. Hours purchased via Cloud Computing can be distributed pon-uniformly in time (e.g., use 100 server-hours
today and no server-hours tomorrow, and still pay only for what you use); in the networking community, this way of
selling bandwidth is already known as usage-based pricing, * In addition, the absence of up-front capital expense
allows capiltal to be redirected to core business investment.

Therefore, even though Amazon's pay-as-you-go. pricing (for example) could be more expensive than buying and
depreciating a comparable server over the same period, we argue that the cost is outweighed by the extremely important
Cloud Computing economic benefits of elasticity and transference of risk, especially the risks of overprovisicning
(underutilization) and underprovisioning (saturation).

We start with elasticity. The key observation is that Cloud Computing’s ability to add or remove resources at a fine
grain (one server at a time with EC2) and with 2 lead time of minutes rather than weeks allows matching resources
to workload much more closely. Real world estimates of server utilizatioh in datacenters range from 5% to 20%
[37, 38]. This may sound shockingly low, but it is consistent with the observation that for many services the peak
workload exceeds the average by factors of 2 to 10. Few users deliberately provision for less than the expected peak,
and therefore they must provision for the peak and allow the resources to remain idle at nonpeak times, The more
pronounced the variation, the more the waste. A simple example demonstrates how elasticity allows reducing this
waste and can therefore more than compensate for the potentially higher cost per server-hour of paying-as-you-go vs.

buying.

Example: Elasticity. Assume our service has a predictable daily demand where the peak requires 500
servers at noon but the trough requires only 100 servers at midnight, as shown in Figure 2(a). As long as
the average utilization over a whole day is 300 servers, the actual utilization over the whole day (shaded
area under the curve) is 300 x 24 = 7200 server-hours; but since we must provision to the peak of 500
servers, we pay for 500 x 24 = 12000 server-hours, a factor of 1.7 more than what is needed. Therefore,
as long as the pay-as-you-go cost per server-hour over 3 years* isless than 1.7 times the cost of buying the
server, we can save money using utility computing.

In fact, the above example underesrimares the benefits of elasticity, because in addition to simple diurnal patterns,
most nontrivial services also experience seasonal or other periodic demand variation (e.g., e-commerce peaks in De-
cember and photo sharing sites peak after holidays) as well as some unexpected demand bursts due to external events
{e.z., news events). Since it can take weeks to acquire and rack new equipment, the only way to handle such spikes
is to provision for them in advance. We already saw that even if service operators predict the spike sizes correctly,
capacity is wasted, and if they overestimate the spike they provision for, it's even worse. .

They may also underestimate.the spike (Figure 2(b)), however, accidentally turning away excess users. While
the monetary effects of overprovisioning are easily measured, those of underprovisioning are harder to measure yet
potentially equally serious: not only do rejected users generate zero revenue, they may never come back due to poor
service, Figure 2(c) aims to capture this behavior: users will desert an underprovisioned service until the peak user
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Figure 2: (@) Bven if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during
nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. {c)
Underprovisioning case 2: some users desert the site permanernitly after experiencing poor service; this attrition and

possible negative press result in a permanent loss of a portion of the revenue stream.
]

load eqiials the datacenter”s usable capacity, at which point users again receive acceptable service, but with fewer
potential users.

Example: Transferring risks. Suppose but 10% of users who receive poor service due to underpro-
visioning dre “permanently lost” opportunities, i.e. users who would have remained regular visitors with
a better experience. The site is initially provisioned to handle an expected peak of 400,000 users (1000
 users per server X 400 servers), but unexpected positive press drives 500,000 users in the first hour, Of
‘the 100,000 who are turned away or receive bad service, by our assurnption 10,000 of them are perma-
nently lost, leaving an active user base of 390,000, The next hour sees 250,000 new unique users, The
first 10,000 do fine, but the site is still over capacity by 240,000 users. This results in 24,000 additional
defections, leaving 376,000 permanent users. If this.pattern continues, after 1g 500000 or 19 hours, the
number of new users will approach zero and the site will be at capacity iu steady state, Clearly, the service
operator has collected less than 400,000 users’ worth of steady: revenue during those 19 hours, however,
again illustrating the underutilization argument —to say nothing of the bad reputation from the disgryntled
users. :

Do such scenarios really occur in practice? When Animoto [4] made its service available via Facebook, it expe-
rienced a demand surge that resulted in growing from 50 servers to 3500 servers in three days. Even if the average
utilization of each server was low, no one could havé foreseen that resource needs would suddenly double every 12
hours for 3 days. After the peak subsided, traffic fell to a level that was well below the peak. So in this real world
example, scale-up elasticity was not a cost optimization but an operational requirement, and scale-down elasticity
allowed the steady-state expenditure to more closely match the steady-state workload.

Elasticity is valuable to established companies as well as startups, For example, Target, the nation’s second largest
retailer, uses AWS for the Target.com website. While other retailers had severe performance problems and intermittent
unavailability on “Black Friday” (November 28), Target's and Amazon’s sités were just slower by about 50%. 3
Similarly, Salesforce.com hosts customers ranging from 2 seat to 40,000+ seat customers.

Even less-dramatic cases suffice to illustrate this key benefit of Cloud Computing: the risk of mis-estimating
workload js shifted from the service operator to the cloud vendor. The cloud vendor may charge a premium (reflected
as a higher use-cost per server-hour compared to the 3-year purchase cost) for assuming this risk. We propose the
following simple equation that generalizes all of the above cases. We assume the Cloud Computing vendor employs
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usage-based pricing, in which customers pay proportionally to the amount of time and the amount of resources they
use. While some argue for more sophisticated pricing models for infrastructure services [28, 6, 40], we believe usage-
based pricing will persist because it is simpler and more transparent, as demonstrated by its wide use by “real” utilities
such as electricity and gas companies. Similarly, we assume that the customer’s revenue is directly proportional to the
total number of user-hours. This assumption is congistent with the ad-supported revenue model in which the number
of ads served is roughly proportional to the total visit time spent by end users on the service,

‘ Cost .
UserHoursgjg,q X (revenue — Costyygyq) = UserHoursgyycenter X (revenue — M——Utgl?;z‘:;‘;mr) @

The left-hand side multipties the net revenue per user-hour {revenue realized per user-hour minus cost of paying
Cloud Computing per user-hour) by the number of user-hours, giving the expected profit from using Clopd Comput-
ing. The right-hand side performs the same calculation for a fixed-capacity datacenter by factoring in the average
utilization, including nonpeak workloads, Whichever side is greaterrepresents the opportunity for higher profit.

Apparently, if Utilization = 1.0 (the datacenter equipment is 100% utilized), the two sides of the equation look
the same. However, basic queueing theory tells us that as utilization approaches 1.0, system response time approaches
infinity. In practice, the usable capacity of a datacenter (without compromising service) is typically 0.6 to 0.8.8
Whereas a datacenter must necessarily overprovision to account for this “overhead,” the cloud vendor can simply
factor it into Costy)qyq- (This overhead explains why we use the phrase “pay-as-you-go” rather than rent or lease for
utility computing. The latter phrases include this unusable overhead, while the former doesn’t. Hence, even if you
lease 2 100 Mbits/second Internet link, you can likely use only 60 to 80 Mbits/second in practice.)

The equation makes clear that the common element in all of our examples is the ability to control the cost per user-
hour of operating the service. In Example 1, the cost per user-hour without elasticity was high because of resources
sitting idle—higher costs but same number of user-hours. The same thing happens when over-estimation of demand
results in provisioning for workload that doesn’t materialize, In Example 2, the cost per user-hour increased as a result -
of underestimating a spike and having to tum users away: Since some fraction of those users never return, the fixed
costs stay the same but are now amortized over fewer user-hours, This illustrates fundamental limitations of the “buy”
model in the face of any nontrivial burstiness in the workload.

Finally, there are two additional benefits to the Cloud Computing user that result from being able to change their
resource usage on the scale of hours rather than years. First, unexpectedly scaling down (disposing of temporarily-
underutilized equipment)-for example, due to a business slowdown, or ironically due to improved software efficiency—
normally carries a financial penalty. With 3-year depreciation, a $2,100 server decommissioned after 1 year of opera-
tion represents a “penalty” of $1,400. Cloud Computing eliminates this penalty.

Second, technology trends suggest that over the useful Lifetime of some purchased equipment, hardware costs
will fall and new hardware and software technologies will become available. Cloud providers, who already enjoy

-economy-of-scale baying power as described in Section 3, can potentially pass on some of these savings to their
customers, Indeed, heavy users of AWS saw storage costs fall 20% and networking costs fall 50% over the last 2.5
years, and the addifion of nine new services or features to AWS over less than one year. 7 If new technologies or
pricing plans become available to a cloud vendor, existing applications and customers can potentially benefit from
them immediately, without incurring a capital expense. In less than two years, Amazon Web Services increased the
number of different types of compute servers (“instances") from one to five, and in less than one year they added seven
new infrastructure services and two new operational support opuons 8

6.2 Comparing Costs: Should I Move to the Cloud?

Whereas the previous section tried to quantify the economic value of specific Cloud Computing benefits such as
elasticity, this section tackles an equally important but larger question: Is it more economical to move my existing
datacenter-hosted service to the cloud, or to keep it in a datacenter?

Table 5 updates Gray's 2003 cost data [21] to 2008, allowing us to track the rate of change of key technologies for
Cloud Computing for the last 5 years. Note that, as expected, wide-area networking costs have improved the least in 5
years, by less than a factor of 3. While computing costs have improved the most in 5 years, the ability to use the extra
computing power is based on the assumption that programs can utilize all the cores on both sockets in the computer.
This assumption is likely more true for Utility Computing, with many Virtual Machines serving thousands to millions
of customers, than it is for programs inside the datacenter of a single company,

To facilitate calculations, Gray calculated what $1 bought in 2003. Table 5 shows his numbers vs. 2008 and
compares to EC2/S3 charges. At first glance, it appears that a given dollar will go further if used to purchase hardware
in 2008 than to pay for use of that same hardware. However, this simple analysis glosses over several important factors.

Pay separately per resource. Most applications do not make equal use of computation, storage, and network
bandwidth; some are CPU-bound, others network-bound, and so on, and may saturate one resource while underutiliz-
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Table 5: We update Gray’s costs of computing resources from 2003 to 2008, normalize to what $1 could buy in 2003
vs. 2008, and compare to the cost of paying per use of $1 worth of resources on AWS at 2008 prices.

| 'WAN bandwidth/mo. CPU hours (all cores) disk storage
Item in 2003 1 Mbps WAN link 2 GHz CPU,2 GB DRAM | 200 GB disk, 50 Mbfs
transfer rate
Cost in 2003 $100/mo. $2000 $200
$1 buys in 2003 LGB 8 CPU hours 1GB
Item in 2008 100 Mbps WAN link 2 GHz, 2 sockets, 4 1TB disk, 115 MB/s sus-
cores/socket, 4 GB DRAM | tained transfer
Cost in 2008 -$3600/mo. $1000 $100
$1 buys in 2008 2.7GB 128 CPU hours 10GB
cost/performance | 2.7x 16x. 10x
improvement ) .
Costtorent 31 $0.27-30.40 $2.56 $1.20-31.50
worth on AWS in | (30.10-30.15/GB x 3GB) | (128x 2 VM's@$0.10 | ($0.12-$0.15/GB-month
2008 each) ) x 10 GB)

ing others. Pay-as~you-go.Cloud Computing can charge the application sepurately for each type of resource, reducing
the waste of underutilization. While the exact savings depends on the application, suppose the CPU is only 50%
utilized while the network is at capacity; then in a datacenter you are effectively paying for double the number of
CPU cycles actually being used. So rather than saying it costs $2.56 to rent only $1 worth of CPU, it would be more
accurate to say it costs $2.56 to rent $2 worth of CPU. As a side note, AWS’s prices for wide-area networking are
actually more competitive than what a medium-sized company would pay for the same bandwidth.

Power; cooling and physical plant costs. The costs of power, cooling, and the amortized cost of the building are
missing from our simple analyses so far. Hamilton estimates that the costs of CPU, storage and bandwidth roughly
double whien those costs are amortized over the building's lifetime [23, 26]. Using this estimate, buying 128 hours
of CPU in 2008 really costs $2 rather than $1, compared to $2.56 on EC2, Similarly, 10 GB of disk space costs $2
rather than $1, compared to $1.20-$1.50 per month on S3. Lastly, §3 actually replicates the data at least 3 times for
durability and performance, ensure durability, and will replicate it further for performance is there is high demand for
the data. That means the costs are $6.00 when purchasing vs. $1.20 to $1.50 per month on 3.

, Operations costs. Today, hardware operations costs are very low—rebooting servers is easy (e.g., IP addressable
power strips, separate out of band controllers, and so on) and minimally trained staff can replace broken components
at the rack or server level. On one band, since Utility Computing uses virtual machines instead of physical machines,
from the cloud user’s point of view these tasks are shifted to the cloud provider. On the other hand, depending on the
level of virtualization, much of the software management costs may remain~upgrades, applying patches, and so on.
Returning to the “managed vs. unmanaged™ discussion of Section 5, we believe these costs will be lower for managed
environments (e.g. Microsoft Azure, Google AppEngine, Force.com) than for hardware-level utility computing (e.g.
Amazon EC2), but it seems hard to quantify these benefits in a way that many would agree with.

With the above caveats in mind, here is a simple example of deciding whether to move a service into the cloud.

Example: Moving to cloud. Suppose a biology lab creates 500 GB of new data for every wet lab experi-
ment. A computer the speed of one EC2 instance takes 2 hours per GB to process the new data. The lab has
the equivalent 20 instances locally, so the time to evaluate the experiment is 500 x 2/20 or 50 hours. They
could process it in a single hour on 1000 instances at AWS. The cost to process one experiment would be
Jjust 1000 x $0.10 or $100 in computation and another 500 x $0.10 or $50 in network transfer fees. So far,
so good. They measure the transfer rate from the lab to AWS at 20 Mbits/second. [19] The transfer time is
(500G B x 1000M B/GB x.8bits/ Byte) /200 bits/sec = 4,000,000/20 = 200, 000 seconds or more
than 55 hours. Thus, it takes 50 hours locally vs. 55 + 1 or 56 hours on AWS, so they don't move to the
cloud. (The next section offers an opportunity on how to overcome the transfer delay obstacle.)

A related issue is the software complexity and costs of (partial or full) migrating data from a legacy enterprise
application into the Cloud. While migration is a one-time task, the amount of effort can be significant and it needs to be
considered as a factor in deciding to use Cloud Computing. This task is already spawmnfr new business opportunities
for companies that provide data integration across public and private Clouds.
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Table 6: ‘Top 10 Obstacles to and Opportunities for Adoption and Growth of Cloud Computu‘ur

Obstacle Opportunity
1 | Availability of Service Use Multiple Cloud Providers to provide Business Contmuxty,
Use Elasticity to Defend Against DDOS attacks
2 | DataLock-In - | Standardize APIs;

Make compatible software available to enable Surge Computing

3 | Data Confidentiality and Auditability Deploy Encryption, VLANS, and Firewalls;
Accommodate National Laws via Geographical Data Storage

4 | Data Transfer Bottlenecks FedExing Disks; Data Backup/Archival;
) Lower WAN Router Costs; Higher Bandwidth LAN Switches
5 | Performance Unpredictability Improved Virtual Machine Support; Flash Memory;
: Gaung Scheduling VMs for FIPC apps
6 | Scalable Storage Invent Scalable Store
7 | Bugs in Large-Scale Distributed Systems | Invent Debugger that relies on Distributed VMs
8 | Scaling Quickly Invent Auto-Scaler that relies on Machine Learning;
i Snapshots to encourage Cloud Computing Conservationism
9 | Reputation Fate Sharing Offer reputation-guarding services tike those for email
10. | Software Licensing Pay-for-use licenses; Bulk use sales

7 Top 10 Obstacles and Opportunities for Cloud Computing

In this section, we offer a ranked list of obstacles to the growth of Cloud Computing. Each obstacle is paired with
an opportunity—our thougfits on how to overcome the obstacle, ranging from straightforward product development
to major research projects. Table 6 summarizes our top ten obstacles and opportunities. The first three are technical
obstatles to the adoption of Cloud Computing, the next five are technical obstacles to the growth of Cloud Computing
once it has been adopted, and the last two are policy and business obstacles to the adoption of Cloud Computing.

Number 1 Obstacle: Availability of a Service

Organizations worry about whether Utility Computing services will have adequate availability, and this makes some
wary of Cloud Cormputing. Ironically, existing Saa$ products have set a high standard in this regard. Google Search
is effectively the dial tone of the Internet: if people went to Google for search and it wasn’t available, they would
think the Internet was down. Users expect similar availability from new services, which is hard to do. Table 7 shows
recorded outages for Amazon Simple Storage Service (83), AppEngine and Gmail in 2008, and explanations for the
outages. Note that despite the negative publicity due to these outages, few enterprise IT infrastructures are as good:

Table 7: Outages in AWS, AppEngine, and Gmail

Service and Outage Duration | Date

§3 outage: authentication service overload leadmg to unavailability [39] 2 hours | 2/15/08
53 outage: Single bit error leading to gossip protocol blowup. [41] 6-8 bours | 7/20/08
AppEngine partial outage: programming error [43] Shours | 6/17/08
Gmail: site unavailable due to outage in contacts system [29] . 1.5 hours | &/11/08

Just as large Internet service providers use multiple network providers so that failure by a single company will
not take them. off the air, we believe the only plausible solution to very high availability is multiple Cloud Computing
providers, The high-availability computing community has long followed the mantra “no single source of failure,”
yet the management of a Cloud Computing service by a single company is in fact a single point of failure. Even
if the company has multiple datacenters in different geographic regions using different network providers, it may
have common software infrastructure and accounting systems, or the company may even go out of business, Large
customers will be reluctant to migrate to Cloud Computing without a business-continuity strategy for such situations.
We believe the best chance for independent software stacks is for them to be provided by different companies, as it
has been difficult for one company to justify creating and maintain two stacks in the name of software dependability.

Another availability obstacle is Distributed Denial of Service {DDoS) attacks.. Criminals threaten to cut off the
incomes of SaaS providers by making their service unavailable, extorting $10,000 to $50,000 payments to prevent the
launch of a DDoS attack. Such attacks typically use large “botnets™ that rent bots.on the black market for $0.03 per
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bot (simulated bogus user) per week [36]. Utility Computing offers SaaS providers the opportunity to defend against
DDoS attacks by using quick scale-up. Suppose an EC2 instance can handle 500 bots, and an attack is launched that
generates an extra 1 GB/second- of bogus network bandwidth and 500,000 bots. At $0.03 per bot, such an attack
would cost the attacker $15,000 invested up front. At AWS’s current prices, the attack would cost the victim an extra
$360 per hour in network bandwidth and an extra $100 per hour (1,000 instances) of computation. The attack would
therefore have to last 32 hours in order to cost the potential victim more than it would the blackmailer. A botnet attack
this long may be difficult to sustain, since the longer an attack lasts the easier it is to uncover and defend against, and
the attacking bots could not be immediately re-used for other attacks on the same provider. As with elasticity, Cloud
Computing shifts the attack target from the SaaS provider to the Utility Computing provider, who can more readily
absorb it and (as we argued in Section 3) is also likely to have already DDoS protection as a core competency.

Number 2 Obstacle: Data Lock-In

Software stacks have imprf)ved interoperability among platforms, but the APIs for Cloud Computing itself are still
“essentially proprietary, or at least have not been the subject of active standardization. Thus, customers cannot easily
extract their data and programs from one site to run on another. Concern about the difficult of extracting data from the
cloud is preventing some organizations from adopting Cloud Computing. Customer lock-in-may be attractive to Cloud
Computing providers, but Cloud Computing users are vulnerable to price increases (as Stallman warned), to reliability
problems, or even to providers going out of business.

For example, an online storage service called The Linkup shut down on August 8, 2008 after losing access as much
as 45% of customer data [12]. The Linkup, in turn, had relied on the online storage service Nirvanix to store customer
data, and now there is finger pointing between the two organizations as to why customer data was lost. Meanwhile,
The Linkup’s 20,000 users were told the service was no longer available and were urged to try out another storage site,

The obvious solution is to standardize the APIs so that a SaaS developer could deploy services and data across
multiple Cloud Computing providers so that the failure of a single company would not take all copies of customer data
with it. The obvious fear is that this would lead to a “race-to-the-bottom” of cloud pricing and flatten the profits of
Cloud Computing providers. We offer two arguments to allay this fear.

First, the quality of a service matters as well as the price, so customers will not necessarily jump to the lowest cost
service. Some Internet Service Providers today cost a factor of ten more than others because they are more dependable
and offer extra services to improve usability. '

Second, in addition to iitigating data lock-in concerns, standardization of APIs enables a new usage model in
which the same softwate infrastructure can be used in a Private Cloud and in a Public Cloud. ? Such an option could
enable “Surge Computing,” in which the public Cloud is used to capture the extra tasks that cannot be easily run in the
datacenter (or private cloud) due to temporarily heavy workloads, 10

Number 3 Obstacle: Data Confidentiality and Auditability

“My sensitive corporate data will never be in the cloud.”” Anecdotally we have heard this repeated multiple times.
Current cloud offerings are essentially public (rather than private) networks, exposing the system to more attacks.
There are also requirements for auditability, in the sense of Sarbanes-Oxley and Health and Human Services Health
Insurance Portability and Accountability Act (HIPA.A) regulations that must be provided for corporate data to be
- moved to the cloud.

We believe that there are no fundamental obstacles to making a cloud-computing environment as secure as the
vast majority of in-house IT environments, and that many of the obstacles can be overcome immediately with well-
understood technologies such as encrypted storage, Virtual Local Area Networks, and network middleboxes (e.g.
firewalls, packet filters). For example, encrypting data before placing it in a Cloud may be even more secure than
unencrypted data in a local data center; this approach was successfully used by TC3, a healthcare company with access
to sensitive patient records and healthcare ¢laims, when moving their HIPAA-compliant application to AWS [2].

Similarly, auditability could be added as an additional layer béyond the reach of the virtualized guest OS (or
virtualized application environment), providing facilities arguably more secure than those built into the applications
themselves and centralizing the software responsibilities related to confidentiality and auditability into a single logical
layer. Such a new feature reinforces the Cloud Computing perspective of changing our focus from specific hardware |
to the virtualized capabilities being provided.

A related concern is that many nations have laws requiring SaaS providers to keep customer data and copyrighted
material within national boundaries. Similarly, some businesses may not like the ability of a country to get access to
their data via the court system; for example, a European customer might be concerned about using SaaS in the United
States given the USA PATRIOT Act.
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Clo;zd Computm gives SaaS providers and SaaS users greater freedom to place their storage. For example,
Amazon provides S3 services located physically in the United States-and in Europe, allowing providers to keep data in
whichever they choose. With AWS regions, a simple configuration change avoids the need to find and negouatc with

a hosting provider overseas.

Number 4 Obstacle: Data Transfer Bottlenecks

Applications continue to become more data-intensive. If we assume applicitions may be “pulied apart” across the
boundaries of clouds, this may complicate data placement and transport At 3100 to $150 per terabyte transferred,.
these costs can quickly add up, making data transfer costs an important igsue. Cloud users and cloud providers have to.
think about the implications of placement and traffic at every lovel of. the system if they want to minimize costs. This
kind of reasoning can'be seen in Amazon’s development of their new Cloudfront service.

Oue opportunity to overcome the high cost of Internet transfers is to ship disks. Jim Gray found that the cheapest
way-to send a lot of data isto physically send disks or even whole computers via overnight delivery services [22].
Althotigh there dre no guardntees from the manufacturers of.disks or computers that you can reliably ship-data that
way, he-experfenced only one failure in about 400 attempts (and ¢ven this could be mitigated by shipping extra disks
with redindant dafa in a RAl}}lxke manner).

To quannfy the argimént, assuine that we want to ship 10 TB from U.C. Berkeley to Amazon.in Seattle, Wash-
ington. Garfinkel méastred bandwidth to S3 from three sites and found an average write bandwidth of 5 to 18
Mbitsfsecond. [19] Suppose we get 20 Mbit/sec.over a WAN link. It.would take
10 = 10'% Bytes /(20 x 10° bl'tsfs‘econd) (8 x 10)/(2 x 107) seconds = 4,000,000 seconds,
which is more than 45 days. Amazon would also charge you $1000 in network transfer fees when it received the data.

If we instead sent'ten 1 TB disks via overnight shipping, it would take less than a day to transfer 10 TB and the
cost would be roughly $400, an éffective bandwidth of about 1500 Mbit/sec,!* Thus, “Netflix for Cloud Computing”
could halve costs of bulk transfers into the cloud but mere impoertantly reduce latency by a factor of 45.

Returning to the biology Iab example from Section 6, it would take about 1 houg to write a disk, 16 hours to FedEx
a‘disk, aboat 1 houf to rézd 500-GB, and:then 1 hour to process it. Thus, the time to process the experiment would be
20 hours instead-of 50 arid the cost is would be around $200 per experiment, so they decide to move to the cloud after

« all, -As-disk capacity and cost-pep-mgabyte are growing much faster than network cost-performance—10X vs. less
than 3X in the last 5.years accorchmr to Table 5—the FedEx disk option for large data transfers will get more attractive:
each year.

A second opportunity is to find other reasons tb make it attractive to keep data in the cloud, for once data is in the
cloud for any reason it may no longer be-a bottleneck and may enable new services that could drive the purchase of
Cloud Compufing cycles. Amazon recently began hosting large public datasets (e.g. US Census data) for free on $3;
since there is no charge to transfer data between S3 and EC2, these datasets might “attract” EC2 cycles. As another
example, consider off-site archival dnd backup services. Since companies like Amazon, Google, and Microsoft likely
send much more data than they receive, the cost of ingress bandwidth could be much less. Therefore, for example, if
weekly full backups are moved by shipping physical disks and compressed daily incremental backups are sent over
the network, Cloud Computing might be able to offer an affordable off-premise backup service. Once archived data is
in the-cloud, new servicés become possible that could result in selling more Cloud Computing cycles, such as creating '
searchable indices of all your archival data or performing image recognition on‘all your archived photos to group them
according to who appears in each photo.?

A third, more radical opportunity is to try to reduce the cost of WAN bandwidth more quickly. One estimate is
that two-thirds of the cost of WAN bandwidth is the cost of the high-end routers, whereas only one-third is the fiber
cost [27]. Researchers are exploring simpler routers built. from commodity components with centralizéd control as a
low-cost alternative to the high-end distributed routers [33], If such technology were deployed by WAN providers, we
could see WAN costs dropping more quickly than they have historically.

In addition to WAN bandwidth being a bottleneck, intra-cloud networking technology may be a performance
bottleneck as well. Today inside the datacenter, typically 20-80 processing nodes within a rack are connected via
a top-of-rack switch to a second level aggregation switch. These in tum are connected via routers to storage area
networks and wide-area connectivity, such as the Intemet or inter-datacenter WANs. Inexpensive 1 Gigabit Ether-
net (1GbE) is universally deployed at the lower levels of aggregation. This bandwidth can represent a performance
bottleneck for inter-node processing patterns that burst packets across the interconnect, such as the shuffle step that
occurs between Map and Reduce producing. Another set of batch applications that need higher bandwidth is high
performance computing applications; lack of bandwidth is one reason few scientists using Cloud Computing.

10 Gigabit Ethemnet is typically used for the aggregation links in cloud networks, but is currently too expensive
to deploy for individual servers (about $1000 for a 10 GbE server connection today, vs. $100 for a LGbE counec-
tion). However, as the cost per 10 GbE server connections is expected to drop to less than $200 in 2010, it will gain
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Figufe 3: {2y Memory benchmark performance on 75 Virtual Machines running the STREAM benchmark on left and
(b} Disk performance writing 1 GB files on 75 Virtual Machines on right. .

widespread deployment iriside-the cloud since it has the highly desirable effect of reddcing data transfer latencies and
network contention. This in turn enables more cores and virtual machines per physical server node by scaling up the
network, Also in 2010, 40 GbE and 100 GbE will appear for the higher aggregation layers [10].

i

Number 5 Obstacle' ‘Performance Unpredictability

Our’ expsnencc is tHat mult.tple Virtual Machines can share CPUs and main memory surpnsmgly well in Cloud Com-
puting, but that VO shanng is more problemauc Figure 3(a) shows the average memory bandwidth for 75 EC2
instances running thé STREAM memory-benchmark [32]. The mean bandwidth is 1355 MBytes per second, with a
" standard’ devmtxoa of just 52 MBytes/sec, less than 4% of the mean. Figtre 3(b) shows the average disk bandwidth
for 75'EC2 instances each writing 1 GB files to local disk. The mean disk write bandwidth is nearly 55 MBytes per
second with a standard deviation of a little over 9 MBytesfssc, more than 16% of the mean. This demonstrates the
problem of /O interference between virtual machines.

One opportunity is to lmprove architectures and operating systerms to efficiently virtualize interrupts aod I/O chan-
nels. Technologies such as PClexpress are difficult to virtualize, but they are critical to the cloud. One reason to be
hopeful is that IBM mainframes and operating systems largely overcame these problems in the 1980s, so we have
successful examples from which fo learn,

Another possibility is that flash memory will decrease I/O interference. Flash is semiconductor memory that
preserves information when powered off like mechanical hard disks, but since it has no moving parts, it is much faster
to access (microseconds vs. milliseconds) and uses less energy. Flash memory can sustain many more I/0s per second
per gigabyte of storage than disks, so multiple virtual machines with conflicting random I/O workloads could coexist
better on the same physical computer without the interference we see with mechanical disks. The lack of interference
that we see with semiconductor main memory in Figure 3(a) might extend to semiconductor storage as well, thereby
increasing the number of applications that can run well on VMs and thus share a single computer. This advance could
lower costs to Cloud Computing providers, and eventually to Cloud Computing consumers.

Arnother unpredictability obstacle concerns the scheduling of virtual machines for some classes of batch processing
programs, specifically for high performance computing. Given that high-performance computing is used to justify
Government purchases of $100M supercomputer centers with 10,000 to 1,000,000 processors, there certainly are
many tasks with parallelism that can benefit from elastic computing. Cost associativity means that there is no cost
penalty for using 20 times as much computing for 1/20** the time. Potential applications that could benefit include
those with very high potential financial returns—financial analysis, petroleum exploration, movie animation—and
could easily justify paying a modest premium for a 20x speedup. One estimate is that a third of today’s server market
is high-performance computing {10].

The obstacle to attracting HPC is not the use of clusters; most parallel computing today is done in large clusters
using the message-passing interface MPI. The problem is that many HPC applications need.to ensure that all the
threads of a program are running simultaneously, and today's virtual machines and operating systems do not provide
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a programmer-vigible way to ensure this, Thus, the .opportunity to overcome this obstacle s to offer something like
“gang scheduling” for Cloud Computing,

Number 6 Obstacle: Scalable Storage

Early in this paper, we identified three properties whose combination gives Cloud Compiting its appeal: short-term
usage (which implies scaling down as well as up when resources are no longer needed), no up-front cost, and infinite
capacity on-demand.- While it's straightforward what this means when applied to computation, it's less obvious how
to apply it to pcrsxstent storage.

As Table 4 shows, there have been many attempts to answer this quesiton, varying.in the richness of the query and
storagé API’s, the performance guarantees offered, and the complexity of data structures that are directly suppoited
by the storage system (e.g., scliema-less blobs vs. column-oriented storage).!* The opportunity, which is still 2it open
tesearch probleém, is to-create a storage system: wouild not only meet these needs but combine them with the cloud
advantages of scaling arbitrarily up and down on-demand, as well as meeting programmer expectations in regard to
resolirce management for scalability, data durability, dnd high availability.

Nuriiber 7 Obstaéle: Bugs ini Large-Scale D'istributed Systems

Ohe of the difficult challenges ih Cloud Computing is removing errors in these very large scale distributed systems. A
common occurrence is that these bugs cannot be reproduced in smaller configurations, so the debugging must occur at

seale in the production datacenters.

One opporturity may. be the reliance on virtual machines in Cloud Computing. Many traditional SaaS providers
developed their infrastructure without i usmg VMs, either because they preceded the recent populanty of VMs or
because they felt they could not afford the performance hit of VMs. Since VMs are de rigueur in Utility Computing,
that lével of vu'tua.hzauon may make it possible to capture valuable information in'ways that are implausible without.

Ws

NumberS Obstacle' Scalmur chkly

Pay-as~you»go certamly applies to storage and-to network bandwidth, both of which count bytes used. Computation
is shvhtly dlfferent, dependmg on the virtialization level. Google AppEngine automatically scales in response to
load increases and decreases, and users are charged by the cycles used. AWS chiarges by the hour for the nuinber of
instances you occupy, even if your machine is idle._

The opportunity is then to automatically scale qmckly up and down in response to load in order to save mioney,
but without violating service level dgreements. Indeed, one RAD Lab focus is the pervasive and aggressive use of

- statistical macliine Ieammg as a diagnostic and predictive tool that would allow dynamic scaling, automatic reaction

to performance and correctness problems, and generally automaticmanagement of many aspects of these systerns.

Another reason for scaling is to conserve resources as well as money. Since an idle computer uses about two-thirds
of the power of a bisy compuiter, careful use of resources could reduce the impact of datacenters on the environment,
which is currently receiving a great deal of negative attention. Cloud Computing providers already perform careful
and low overhead accounting of fesource consumption. By imposing per-hour and per-byte costs, utility computing
encourages programmers to pay attention to efficiency (i.e., releasing and acquiring resources only when necessary),
and allows more direct measurement of operational and development inefficiencies.

Being aware of costs is the first step to conservation, but the hassles of configuration make it tempting to leave
machines idle overnight so that nothing has to be done to get started when developers retumn to work the next day. A
fast and easy-to-use snapshot/restart tool might further encourage conservation of computing resources.

Number 9 Obstacle: Reputation Fate Sharing

Reputations do not virtualize well, One customer’s bad behavior can affect the reputation of the cloud as a whole. For
instance, blacklisting of EC2 IP addresses [31] by spam-prevention services may limit which applications can be effec-
tively hosted. An opportunity would be to create reputation-guarding services similar to the “trusted email" services
currently offered (for a fee) to services hosted on smaller ISP’s, which experience a microcosm of this problem.

Another legal issue is the question of transfer of legal liability—Cloud Computing providers would want legal
liability to remain with the customer and not be transferred to them (i.e., the company sending the spam should be
held liable, not Amazon).
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Number 10 Obstacle: Software Licensing ‘ .

Current software licenses commonly restrict the computers on which the software can run, Users pay for the software
and then pay an annual maintenance fee. Indeed, SAP announced that it would increase its annual maintenance fee to
at least 22% of the purchase price of the software, which is comparable to Oracle’s pricing [38]. Hence, many cloud
computing providers originally relied on oper source software in part because the licensing model for. commercial
software is'not a good match to Utility Computing.

The pnma.ry opportunity is either for open source to remain popular or simply for commercial software companies
to change their licensing structure to better fit Cloud Computing. For example, Microsoft and Amazon now offer
pay-as:you-go software licensing for Windows Server and Windows SQL Server on EC2. An EC?2 instance running
Miciosoft Windows costs $0. 15 per bour instead of the traditional $0.10 per hour of the open source version. 15

A related Gbstacle is encouraging sales forces of software companies to sell products into Cloud Computing. Pay-
as-you-go seeras incompatible with the guarterly sales tracking used to measure effectiveness, which is based on

. one-time purchases: The opportunity for cloud providers is simply to offer prepaid plans for bulk use that can be'sold
at discount. For éxample, Oracle sales people might sell 100,000 instance hours using Oracle that can be used over
the next two years dt a.cost less than is the customer were to purchase 100,000 hours on their own. They could then
meet their quarterly quotds and make their commissions from cloud sales as well as from traditional software sales,
potentially converting this customer-facing part of a company from naysayers into advocates of cloud computing.

8 Conclusion and Questions about the Clouds of Tomorrow

The long dreanied visioh of computing as a utility is finally emerging. The elasticity of a utility matches the need of
businesses providing services directly to customers over the Internet, as workloads can grow {and shrink) far faster
than 20 years ago. It used to take years to grow a business to several million customers —now it can happen in months.

“From the cloud provider's viéw; the ¢onstruction of very large datacenters at low cost sites using commodity
computing, sto:age, and' networking rincovered the possibility of selling those resources on a pay-as-you-go model
below the costs 6f many medium-sized datacenters, while making a profit by statistically multiplexing among 2 large
.group of castomers. From theé cloud user’s view,, it would be as startling for a new software starfup to build its own
datacenter as-it would for a hardware startup to build its own fabrication line. In addition to startups, many other

- established organizations take advantage of the elasticity of Cloud Computing regularly, including newspapers like the
: Washmgton Post, movie companies like Pixar, and universities like ours. Our lab has benefited substantlally from the
ability to complete résearch by conference deadlines and adjust resources over the semester to accommodate course
deadlines. As Cloud Computing users, we were reheved of deahng with the twin dangers of over-provisioning and
under-prowsmmng our internal datacenters.

Some question Whethet-companies accustomed to high-margin busmesses, such as ad revenue from search engines
and_ traditional patkaged software, can competé in Cloud Computing, First, the question presumes that Cloud Com-
puting is a small margin business based on its low cost. Given the typical utilization of mediumn-sized datacenters, the
potential factors of 5 to 7 in economies of scale, and the further savings in selection of cloud datacenter locations, the
apparently low costs offered to cloud users may still be highly profitable to cloud providers. Second, these companies
may already have the datacenter, networking, and software infrastructure in place for their mainline businesses, so
Cloud Computing represents the opportunity for more income at little extra cost,

Although Cloud Computing providers may run afoul of the obstacles summarized in Table 6, we believe that over
the long run providers will successfully navigate these challenges and set an example for others to follow, perhaps by
successfully exploiting the opportunities that correspond to those obstacles,

Hence, developers would be wise to design their next generation of systems to be deployed into Cloud Comput-
ing. In general, the emphasis should be horizontal scalability to hundreds or thousands of virtual machines over the
efficiency of the system on a single virtual machine. There are specific implications as well:

= Applications Software.of the future will likely have a piece that runs on clients and a piece that runs in the
Cloud. The cloud piece needs to both scale down rapidly as well as scale up, which is a new requirement for
software systems. The client piece needs to be useful when disconnected from the Cloud, which is not the case
for many Web 2.0 applications today. Such software also needs a pay-for-use licensing model to match needs
of Cloud Computing.

» Infrastructure Software of the future needs to be cognizant that it is o longer running on bare metal but on
virtual machmcs Moreover, it needs to have billing built in from the bevmmng, as it is very difficult to retrofit

an accounting system.
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« Hardware Systems of the. future need to be designed at the scale of a container (at least a dozen racks) rather
than at the scale of a single 1U box or single rack, as that is the minimurm level at which it will be purchased. Cost
of operation will match performance and cost of purchase in importance in the acquisition decision. Hence, they
need to strive for energy proportionalisy [9] by making it possible to put into low power mode the idle portions of
the memory; storage, and networking, which already happens inside a microprocessor today. Hardware should
also be designed assuming that the lowest level software will be virtual machines rather than a single native
operating system, and it will need to facilitate flash as a new level of the memory hierarchy between DRAM and
disk. Finally, we need improvements in bandwidth and costs for both datacenter switches and WAN routers.

While we are optimistic about the future of Cloud Computing, we would love to look into a crystal ball to see how
popular it is and what it will look like in five years:

‘Change-Tn Technology and Pricés Over Time: What will billing units be like for the higher-level virtualization
clouds? What will Table' 5, tracking the relative prices of different resources, look like? Clearly, the number of

.cores per chip will increase over time, doubling every two to four years. Flash memory has the potential of adding

anothér relatively fast layer to the classic memory hierarchy; what will be its billing unit? Will technology or business
innovations. accelerate network bandwidth-pricing, which is curreritly the most slowly-improving technology?

Virtualization Level:, Will Cload Computing be dominated by low-level hardware virtual machines like Amazon
EC2, intermediate latzcuage offerings like Microsoft Azure, or high-level frameworks like Google AppEngine? Or
will we have many virtualization levels that match different applications? Will-value-added services by independent
companies like RightScale, Heroku, or EngineYard survive in Utility Computing, or will the successful services be
entirely coopted by the Cloud providers? If they do consolidate to a single virtualization layer, will multiple compa-
nies embrace a common standard? Will this lead to a race to the bottom in pricing so that it’s unattractive to become a
Cloud Compuiting providet, or will they differentiate in services or quality to maintain margins?

Acknowledgments’ :

We all work'in the RAD Lab, Iis existence is due to the generous support of the founding members Google, Mi-
¢rosoft, and Sud Microsystems and to the affiliate members Amazon Web Services, Cisco Systems, Facebook, Hewlett-
Pagkard, IBM; NEC, Network Appliance, Orfacle, Siemens, and VMware; by matching funds fiom the State of Cali-
fornia’s MICRO program (grants 06-152, 07-010, 06-148, 07-012, 06-146, 07-009, 06-147, 07-013, 06-149, 06-150,
and 07-008) and the Uhiversity of California Industry/Umversxty Cooperative Research Program (UC Discovery) grant
COMO7-10240; and by the National Science Foundation (grant #CNS-0509559).

We would also like to thank the following people for feedback that improved the alpha draft of this report: Luiz
Barroso, Andy Bechtolsheim, John Cheung, David Cheriton, Mike Franklin, James Hamilton, Jeff Hammerbacher,
Mazvin Theimer, Hal Varian, and Peter Vossha]l For the beta draft, we’d like to thank the following for their com-
ments: Andy Bechtolshexm Jim Blakely, Paul Hofmann, Kim Keeton, Jim Larus, John Ousterhout, Steve Whittaker,

and Feng Zhao.,

Notes

LThe related term “grid computing” from the High Performance Computing community, suggests protocels to offer shared computation and
storage over long distances, but those protocols did not lead to a software environumnent that grew bcyoncl its commumty Another phrase found in
Cloud Computing papers is multitenant, which simply means mumple customers from different companies are using Saa$, so customers and their
data need to be protected from sach other,

2The chnllcnge of disconnected operation is not new to cloud computing; sxtensive research has examined the problems of disconnected opera-
tion, with roots in the Coda filesystem {30} and the Bayou database (18], We simply point out that satisfactory application-leve! and protocal-level
solutions have been developed and adopted in many domains, including IMAP email, CalDAY calendars, version-control systems such as CVS and
Subversion, and recently, Google Gears for JavaScript in-browser applications.that can run disconaected. We are confident that similar approaches
will develop as demanded by mobile applications that wish to use the cloud.

3Usage-bosed pricing is different from reating, Renting a resource involves paying a negotiated cost to have the resource over some time periad,
whether or not you use the resource. Pay-as-you-go involves metering usage and charging based on actual use, independently of the time period
over which the usage occurs, Amazan AWS rounds up their billing to the neatest server-hour or gigabyte-month, but the associated dollar amounts
are small enough (pennies) to make AWS a tme pay-as-you-go sexvice.

#The most common financial models used in the US allow a capital expense 0 be dcpsccza.ted (deducted from tax cbliaations) linearly over a
J-year period, so we use this figure as'an estimate of equipmeat lifetiine in our cost compacisons.

SAccordmg to statistics collected by Keynote Systems Inc, on Black Friday 2008 (November 28th), Target and Amazon's e-commerce sites
were slower on Friday — " transaction that tock 23 seconds lnst week required about 40 seconds Friday morning” (5).

é20d edition of Hennessy/Patterson had these rules of thumb for storage systems:

» [JObus < 75%
s Disk bus SCSI < 40% (when attach multiple disks per bus)
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» Disk arm sesking < 60% ;
» Disk IO per second or MB/s < 80% peak

Hence, 60% to 80% is a safe upper bound.
Table 8 shows changes in prices for AWS storage and ngtworking over 2.5 years,

Table 8: Changes in price of AWS S3 storage and networking over time,

Storage Cast of Data Stored per GB-Month
Date < 50 TB 50-100 TB 100-500 TB > 500 TB.
3/13/06 $0.15 $0.15 30.15 $0.15
10/9/08 30.15 $0.14 $0.13 $0.12
% Original Price 100% 93% 87% 80%
Networking Cost per GB of Wide-Atea Networking Traffic
Date * In © Ouu<10TB Outl0-50TB  Out: 50-150TB  Out: >150TB .
3/13/06 $0.20 30.20 5020 . 50.20 $0.20
10/31/07 $0,10 50.18 50.16 $0.13 30.13
5/108 $0.10 $0.17 50.13 50.11 $0.10
% Original Pdce 50% 85% ' 65% 55% 50%

8 7Table 9 shows the new services and support options AWS added during 2008, and the date of each introduction. Table 10 shows the different
types of AWS compute instances and the date each type was introduced.

: Table 9: New AWS Services.
-Date | New Service
’ 3-Dec-08 | Public Data Sets on AWS Now Available
18-Nov-08 | Announcing Amazon CloudEront (Content Distribution Network)
23-Oct-08. | Amazon EC2 Runaing Windows Server Now Available
. 23-Oct-08. |- Amazon EC2 Exits Beta and Now Offers a Service Level Agreement
. 22-Sep-08 | Orucle Products Licensed for Amazon Web Services t
20-Aug-08 | Amazon Elastic Block Stors Now Available
5-May-08 |. OpenSolaris and MySQL Enterprise on Amazon EC2
16-Apr-08-| Announcing AWS Premium Suppott.
26-Mar-08 | Announcing Elastic IP Addresses and Avmlabﬁlty Zones t’ot Amazon EC2

Table 10: Diversity of EC2 instances over time.

Date | Type Cost/ Compute DRAM Disk (GB) | Compute/S GB DRAMA ~ GB Diskl
Hour Units {GB) )

8/24/06 | Small $0.10- 1 17 160 10 17.0 1600
10/22/07 | Large . $0.40 4 - 15 850 10 . 183 2130
10/22/07 | Extra Large $0.30 § 15.0 1690 i0 13.3 2110

5/29/08 | High-CPU Medium $0.20 5 1.7 © 350 25 - 8.5 1750

5/29/08 | High-CPU Extra Large $0.80 20 7.0 1690 25 - 8.8 2110

dWhile such standardization can occur for the full spectrum of utility computing, the ability of the leading cloud providers to distibute software
to match standardized APIs varies. Microsoft is in the software distribution business, so it would seem to be a small step for Azure to publish all the
APls and offer software to run in the datacenter. Interestingly for AWS and Google AppEngine, the best examples of standardizing APIs come from
open sources efforts from outside these companies. Hadoop and Hypertable are efforts to recreate the Google infrastructure [11], and Eucalyptus
recreates important aspects of the EC2 API [34],
101ndeed, harking back to Section 2, “surge chip fabrication™ is one of the common uses of “chip-les™ fabrication companies like TSMC,
1A ITB 3.5 disk weighs 1.4 pounds, If we assume that packaging material adds about 20% to the weight, the shipping weight of 10 disks is 17
pounds, FedEx charges about $100 to deliver such a-package by 10:30 AM the next day and about $50 to deliver it in 2 days. Similar o Netflix,
Amazon might let you have one “disk boat” on-loan to use when you need it. Thus, the tound-tip shipping cost for Amazon to ship you 4 set of
disks and for you to ship it back is $150, assuming 2-day delivery from Amazon and overnight delivery to send it to Amazon. It would then take
Amazon about 2.4 hours to “dump” the disk contents into their datacenter {a 1 TB disk can transfer at 115 Mbytes/sec). If each disk contains whole
files (e.g. a Linux ext3 or Windows NTFS filesystem), all disks could be read or wrinten in parailel. While it's hard to put a cost of internal data -
center LAN bandwidth, it is surely at least 100x less cxpensive than WAN bandwidth, Let's assume the labor costs to unpack disks, load themso
that they can be read, repackage them, and so on is $20 per disk.
The'total latency is then less than a day (2.4 hours to write, 14-18 hours for overnight shipping, 2.4 hours to read) at a cost about $400 ($50 to
receive from Amazon, 5100 to send to Amazon, 5200 for Iabor costs, and $40 charge for intermnal Amazon LAN bandwidth and labor charges).
Rather than ship disks, 2nother option would be to ship a whole disk array including shest metal, fans, power suppliers, and network intetfaces,
The extra comiponents would incrense the shipping weight, but it would simplify connection of storage to the Cloud and to the local device and
reduce labor, Note that you would want a lot more network bandwidth than is typically provided in conventional disk arrays, since you don’t want
to sm:tch the time load or unload the data.
12 The relatively new company Data Domain uses spccmhzed compression algorithms tailored to incremental backups, they can reduce the size
of these backups by a factor of 20. Note that compression can also raduce the cost to utility computing providers of their standard storage products.
Lossless compression can reduce data demands by factors for two.to three for many data types,.and much higher for some. The Cloud Computing
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provider likely has spare computation cycles at many times that could be used to compress data that has not been used recently. Thus, the acwal
storage costs could be two to three times less than customers believe they are storing. Although.customers could do compression as well, they have

to pay the computing cycles to compress and decompress the data, and do not have the luxury of “free” computation.
A second advantage that customers cannot have is to “de-dupe” files across multiple customers. This approach to starage calculates a signature
for each file and then only stores a single copy of it on disk. Examples of files that could be identical across many customers include binaries for

popular programs and popular images and other media.
IFor example, to szmphfy pa:a.l!cl programming its commen to have phases where all the threads compute and then all the threads communicate.

Computation and communication phases are scparated by 2 barrier synchmnunnon, where every threud must wait until the last thread is finishing
computing of communicating. If some threads of the gang are not running, that slows down these phases until they all have run. Although we
could ask high-performance computing programmers to rewzite their programs using more relaxed synchronization, such as that found in Goo,,le s
Map Reduce, a shorter term option would just be for the Cloud Computing provider to offer simultancous gang scheduling of virual machinesasa

Uuhty Computing option.

“, Amoug Amazon's earliest offéring was 53, a primary-key-only store for large binary objects, While 33 manages its own replication, failure
masking-and provisioning, the programinatic APIis that of a key-value store (i.e.,a hash table), the response time is not adequate for interactive
client-server applications, and the data stored in S3 is opaque from the storage system’s point of view (i.e., one cannot query or manage data based
on any property othier.than its arbitrary primary key}. Amazon's Elastic Block Store service allows customers to create a file system on 2 viralized
block device, but resource management and long-term redundancy are left to the programmer of each application; this represents an “impedance
mismatch” with application developérs, who now routinely tely on storage systems that perform additional resource management and provide an
AP thate exposes the structure of the stored ddta, Amazon 83 and Gogle BigTable do this automatically, but their programmatic APIs do not expose
much of the structure of the stored data; In contrast to relational databases such as Amazon SimpleDB or Microsoft SQL Data Services.

13The AWS announcement of Oracle product licensing only applies to users who are already Oracle customers on their local computers.
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The Profession of IT

Peter |. Denning

> omputer science was born

construction of the first
gelectronic computers.
In just GO years, computing
has come to occupy a central
place in science, engineering,
business, and everyday life.
Many whose lives are touched
by compuring want to know
how computers work and how
dangerous or risky they are;
some want to make a profes-
sion from working with com-
puters; and most everyone asks
for an uncomplicated frame-
worle for understanding this
complex field. Can their ques-
tions be answered in 2 com-
pact, compelling, and coherent
way?

In whar follows, I will

answer affirmatively, offering a
picture of the great principles
of compuring, There are two
kinds: principles of computation
structure and behavior, which I
call mechanics, and principles of
design. What we call principles are
almost always distilled from recur-
rent paterns observed in practice.
Do practices shape to underlying
principles? Do principles shape to

practice? Ic is impossible to tell. In

Great Principles of Computing

The great principles of computing have been interred beneath layers of
technology in our understanding and our teaching. It is time to set thern free.

my description, therefore, I portray. Lectures in Physics by Richard

in the mid-1940s with the principles and practices as two

equal dimensions of computing.

A principles-based approach is
not new to science. The mature
disciplines such as physics, biol-
ogy, and astronomy portray them-
selves with such an approach.
Each builds rich structures from a
small set of grear principles.
Examples of this approach are

COMMUNICATIONS OF THE ACHM  November 2003/Vol. 46, No. 11

Feynman [4], The Joy of Science
by Robert Hazen and James Tre-
fil [5], and Cosmos by Carl Sagan
[7]. Newcomers find a princi-
ples-based approach to be much
more rewarding because it pro-
motes understanding from the
beginning and shows how the
science transcends particular
rechnologies.

In my portrait, the congexts of
use and their histories are imbued
into principles, computing prac-
tices, and core technologies.
Indeed, you cannot understand a
principle without knowing where
it came from, why it is imporrant,
why it is recurrent, why it is uni-
versal, and why it is unavoidable.
Numerous application domains
have influenced the design of all
our core technologies. For exam-
ple, the different styles of the lan-
guages Ada, Algol, Cobol, C++,
Fortran, HTML, Java, Lisp, Perl,
Prolog, and SQL flow out of the
application domains that inspired
them. You cannot make sense of

the debates about the limits of

. machine intelligence without

understanding cognitive science
and linguistic philosophy. In soft-
ware, unless you understarid the
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The Profession of H‘l

The principles of a field are actually a set of interwoven
stories about the structure and behavior of field elements.

different ways engineers and archi--

tects use the term “design,” you
cannot make sense of the rug-of-
war between traditionalists
promoting systems pro-
duced by a highly
methodical engineering
process, and agile develop-
ers promoting systems
built for customer satisfac-
tion, artistry; good taste,
simplicity, and elegance.

The following sections
describe principles of
mechanics, principles of
design, and computing
practices as a framework
supporting core technolo-
gies dnd application
domains. A few implica-
tions of the framework on organiza-
ton and content of computing
curricula, and on the profession
itself, are discussed at the end of this
calumn,

Mechanics

In the 1950s, our field’s founders
postrayed their young science as
a set of core technologies that
supported application domains.
They listed their core technolo-
gies as algorithms, numerical
methods, compuration models,
compilers, languages, and logic
circuits. Over the next 30 years,
we added a few more: operating
systems, information retrieval,

databases, networks, artificial
intelligence, human-computer
interaction, and software engi-

Table 1. Core technologies of computing.

. neering, The 1989 ACM/IEEE

report, Computing as @ Discipline,
listed nine core technology areas
[2]. Since then, the toral number
of core technology areas has
tripled (see Table 1). Today,
learning the mechanics of these
technologies and their hundreds
of possible direct interactions has
become a daunting challenge.

In an effort to stem “curriculum
bloat” from this growth, the Cur-
riculuny 2001 report emphasizes
the ideas at the intersection of the'
core technologies [3]. Unfortu-
nately, a list of core technologies
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and their great ideas does little to
convey the great principles of com-
puring. Two books secking to pop--
] ularize computing focus
on.a few “great ideas” ina
few of these areas, but
their coverage is far from
complete [1, 6]. Neither of
these authors discusses
which ideas are fundamen-
tal principles of all the core
technologies.

Locating the funda-
mental principles of the
field looks, therefore, to be
a very attractive project. It
calls to mind a picture in
which the principles are
the foundartion of a pan-
theon with one pillar for
each great principle. Unfortunately, )
as we shall soon see, such a picture
is an unsatisfactory portrayal of
computing,

Our initial question is: How
shall we express our principles? It
seems like we are looking for
declarative statements, such as:

“The Turing machine is a model
of universal computation.”

Al information can be encoded
as strings of bis.” '

“The number of bits in a message

 source is given by its eniropy.”

But this approach quickly

becomes contentious. Some peo-

ple argue over the definitions of

terms like computation, informa-
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tion, or message sources. Others
ask whether some of the words
ought to be qualified—such as
algorithmic computation, physi-
cally represented bits, or dis-
crete message sources. Still
others ask why these statements
are singled our and not others,
such as “Every function
imposes a lower-bound running
time on all algorithms-that
compute it.” Most everyone

. demands statements of obvious
relevance to the familiar core
technologies. But they wrestle
over the selection criteria for
principle statements, such as
universality, recurrence, invari-
ance, utility for prediction, or
scope of consequences,

How do other fields express
their principles? Physicists use
terms like photons, electrons,
quarks, quantum wave function,
relativity, and energy conserva-
tion. Astronomers use terms like

lancts, stars, galaxies, Hubble shift,
and black holes. Thermodynami-
cists uses terms like entropy, first
law, second law, and Carnot cycle.
Biologists use terms like phylogeny,
ontogeny, DNA, and enzymes.
Each of these terms is actually the
title of a story! The principles of a
field are actually a set of interwoven
stories about the structure and
behavior of field elements. They are
the names of dxaptcrs in books
about the field [4, 5, 7]

These prmcxplc—stomes seek to
make simple the complex history
of a complex atea. They tell his-
tory; showing how the principle
evolved and grew in acceprance
over time. They name the main

contributors. They chronicle feats
of heroes and failures of knaves.
They lay out obstructions and
how they were overcome. They

i
ces

.
gﬁ%@%w e

Table 2. The five windows of computing
mechanics.

explain how the principle works
and how it affects everything else.
The game is to define many terms
in terms of a few terms and to log-
ically derive many statements from
a few statements.

Astronomy, thermodynamics,
and physics use the term mechanics
for the part of their fields dealing
with the behavior and structure of
components. For example, Celes-
tial Mechanics deals with the
motions of heavenly bodies; Statis-
tical Mechanics with the macro
behavior of physical systems com-
prising large numbers of small par-
ticles; Quantum Mechanics with
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wave behaviors of subatomic parti-
cles; Rigid-Body Mechanics with
the balance of forces within and

between connected objects. I

531
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adopr this term for computing.

Computing Mechanics deals \

with the structure and operation of

“computations. It does so with sto-
ries for algorithm, Turing machine,
grammar, message entropy, Process,
protocol stack, naming, caching,
machine learning, virtual machine,
and more. I found I could group
the stories into the five categories
of compuration, communication,
coordination, automation, and rec-
ollection (see Table 2). Every core
technology expresses all five in its
own way.

The lines between these cate-
gories are blurry. For example, the
Internert protocol stack is an ele-
ment of both communication and

17
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coordination; naming and caching
are both elements of communica-
tion and recollection. Therefore, T
found it better to view the cate-
gories as windows into computing
mechanics (see Figure 1).
Although the views through the
edges of windows overlap, the
view through the centers is dis-

tinctive.

Design

Computing Mechanics
does not exhaust all the
principles of our field.
Computing professionals
follow principles of design
that enable them to harness
mechanics in the service of
users and customers. Five
concerns drive the design
principles:

_* Simplicity: Various
forms of abstraction and
structure that overcome the
apparent complexity of the
applications.

* Performance: predicting
throughput, response time, bottle-
necks, capacity planning,

* Reliability: redundancy, recov-
ery, checkpoin, integrity, system
trust.

» Evolvability: adapting to
changes in function and scale,

* Security: access control,
secrecy; privacy; authentication,
integrity, safety.

The design principles them-
‘selves include abstraction, infor-
mation hiding, modules, scparate
compilation, pickages, version
control, divide-and-conquer, func-
tional levels, layering, hierarchy,

separation of concerns, reuse,

encapsulation, interfaces, and vir-
tual machines. These principles
are conventions that we collectively
have found to lead consistently to
dependable and useful programs,
systems, and applications. These
conventions are practiced within
constraints of cost, schedule, com-
patibility; and usability.

Figure 1, The five windows.

Design is not the same in com-
puting as it is in other fields. In
computing we design abstract
objects that perform actions. Other
fields use abstraction to explain or
to organize tangible objects. Since
design tells us about arrangements
of basic components, design sits
above mechanics in our picture of
the field.

Might we call Computing
Mechanics the “science” of com-
puting and the Design Principles
the “art™? I think-not. There is
good science and enginéering and
much art at all levels—mechanics,

design, and applications.
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Computing Practices

Our picture of computing needs
more than mechanics and design.
It needs an account of the com-
puting practices that characterize
our skills as professionals. Our
competence is judged not by our
ability to explain principles, but
by the quality of what we do. I
found five main categories of
computing practice:

* Programming: Using pro-
gramming languages to build
software systems that meet spec-
ifications created in cooperation
with the users of those systems.

&' Computing professionals must

be multilingual, facile with the

numerous programming lan-
guages, each attuned to its own

strategies for solving problems.

* Engineering Systems:
Designing and constructing sys-
tems of software and hardware

components runaing on servers
connected by networks. These
practices include a design compo-
nent concerned with organizing a
system to produce valuable and
tangible benefits for the users; an
engineéring component concerned
with the modules, abstractions,
revisions, design decisions, and
risks in the system; and an opera-
tions component concerned with
configuration, management, and
maintenance of the system. High
levels of skill are needed for large
programmed systems encompass-
ing thousands of modules and
millions of lines of code,

* Modeling and validation:

( Building models of systems to

make predictions about their
behavior under various conditions;
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Our competence is judged not by our principles, but by
the quality of what we do.

and designing experiments to vali-
date algorithms and systems.

» Innovating: Exercising leader-
ship to design and bring about
lasting changes to the ways groups
and communities operate. Innova-
tors watch for and analyze oppor-
tunities, listen to customers,
formulate offers customers see
as valuable, and manage com-
mitments to deliver the
promised results. Innovators are
history-makers who have
strong historical sensibilities.

* Applying: Working with
practitioners in application
domains to produce computing
systems that support their
work. Working with other
computing professionals to pro-
duce core technologies that sup-
port many applications.

I cannot overemphasize the
imporrance of including comput-
ing practices in a portrait of our
field. If we adopt a picture that
ignores practices, our field will end
up like the failed “new math” of
the 1960s—all concepts, no prac-
tice, lifeless; dead.

Our portrait is now complete
(see Figure 2). It consists of com-
puting mechanics (the laws and
universal recurrences that govern
the operation of computations),

design princ%ples (the conventions

for designing computations), com-
puting practices {the standard
ways of building and deploying

computing systems), and core
technologies (organized around
shared artributes of application
domains). Although not shown in
the figure, the entire framework
Hoats in a rich contextual sea of
application domains, collectively

Table 3. Levels of actlon In computing
practices.

exerting strong influences on core
technologies, design, mechanics,
and practice. Each level of the pic-
ture has a characteristic question
that justifies its place in the hierar-
chy and exposes the integial role
of practices (see Table 3).

Implications

By aligning with traditions of
other science fields, a portrait of
computing organized around
great principles and practices
promotes greater understanding
of the science and engineering
behind information technology.
It significantly improves our abil-

ity to discuss risks, benefits, capa-
bilities, and limitations with peo-

- ple outside the field. It recognizes

that computing is action-oriented
and has many customers, and
that the context in which com-
puting is used is as important as

the mechanics of computing. It
also clarifies professional compe-
tence, which depends on dexterity
with mechanics, design, practices,
core technologies, and applica-
tions.

For years, many others have
seen our field as programming,
Through our 1989 Compuring as
a Discipline report [3] we hoped to
encourage new curricula that
would overcome this misleading
image. But this was not to be. Our
practice of embedding a program-
ming language in the first courses,
started when languages were easy
for beginners, has created a mon-
ster. Our students are being over-
whelmed by the complexities of
languages that many experts find

COMMUNICATIONS OF THEACM  November 2003/Vol, 45, No, }} 19
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Figure 2.
Principles-based
portrait of
computing.

challenging (typically Java and approach; the framework pro-
C++). Many students have turned  motes depth in concepts, design,
to cheating and plagiarism as ways  and practice.)

to pass these courses, and It is time for us to make our-
35%-50% drop out prematurely.  selves known by saying our
‘Many do not experience the joy of mechanics, our design principles,
computing: the interplay berween  and our practices. It is time to
the great principles, the ways of ~  stop hiding the enormous depth
algorithmic thinking, and the and breadth of our field. B
solutions of interesting problems.

A curriculum organized around REFERENCES
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extensive programming content Anchor, 1991,
can be moved to Progra_[nmmg 6. Hillis, D. The Pastern on she Stone. Basic
Practices courses (PP1, PP2, ...) Books, 1999.

p e 7. Sagan, C. Cosmos. Random House, 2002.
embedded within a larger Com- '

puting Practices track. The stan-
‘dard core courses (for example,
algorithms, operating systems,
databases’ software engmeenng, O  Permission to make dq,ual ar hard copies of all or part of
Is then b haped chis work for [orc usc is granted withour
NeLwor. ) can taen be reshape to fee provided that copics are not made or ¢ disuibuted for
extend computinﬂ mechanics into peofic or commercial advantage and that copies bear this
. 5 . notice and the full citation on the firse page. To copy oth-
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apphcable mechanics ﬁ.om scratch. ta lists, requires prior specific permission and/or a fee,
(Aside to academic colleagues:
starting with computing mechan-
ics is not a “breadth-first” © 2003 ACM 0002-0782/03/1100 $5.00
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