國立雲林科技大學 96 學年度博士班招生入學考試試題

系所別:財務金融系 科 目:經濟學

There are four questions included in this test. The weight of each question is equally 25 points. Each question may include a couple of sub-questions. Their weights are shown in points.

- 1. A factor of production i is called an inferior if the conditional demand for that factor decreases as output increases; that is, $\partial x_i(\mathbf{w}, y)/\partial y < 0$, where w is vector of factor
 - (a) Draw a diagram indicating that inferior factors are possible. (7 points)
 - (b) Show that if the technology is constant returns to scale, then no factors can be inferior. (9 points)
 - (c) Show that if marginal cost decreases as the price of some factor increases, then the factor must be inferior. (9 points)
- 2. Suppose marginal costs are constant at c>0 and that the demand function is given by

$$D(p) = \begin{cases} 10/p & \text{if } p \le 20\\ 0 & \text{if } p > 20 \end{cases}$$

What is the profit-maximizing price?

(25 points)

- 3. Consider the multiplier-accelerator model of income determination:
 - (1) Consumption depends on the previous period's income: $C_t = a + bY_{t-1}$.
 - (2) The desired capital stock is proportional to the previous period's output:

$$K_{t}^{*}=cY_{t-1}.$$

- (3) Investment equals the difference between the desired capital stock and the stock inherited the previous period: $I_t = K_t^* K_{t-1} = K_t^* cY_{t-2}$.
- (4) Government purchases are constant: $G_i = \overline{G}$.

$$(5) Y_{i} = C_{i} + I_{i} + G_{i}.$$

- (a) Express Y_i in terms of Y_{i-1} , Y_{i-2} and the parameters of the model. (10 points)
- (b) Suppose b=0.9 and c=0.5. Suppose there is a one-time disturbance to government purchases; specifically, suppose that G is equal to $\overline{G}+1$ in period t and is equal to \overline{G} in all other periods. How does this shock affect output in future different 5 periods? (15 points)

國立雲林科技大學 96學年度博士班招生入學考試試題

系所別:財務金融系

目:經濟學

4. Assume that an economy has a production function specified as

$$Y = F(K, AL),$$

where Y = output,

K = physical capital,

A =knowledge, and

L = labor.

The changesin factors per year are respectively as follows.

$$\dot{K} = sY(t) - \delta K(t),$$

$$\vec{L} = nL(t),$$

$$\overset{\bullet}{A} = gA(t),$$

Where s, δ, n, g are all constant.

Suppose that both labor and physical capital are paid by their marginal products.

Let
$$w = \frac{\partial F(K, AL)}{\partial L}$$
 and $r = \frac{\partial F(K, AL)}{\partial K} - \delta$, where $w =$ wage and $r =$ interest rate.

(a) If the production function can be written in another way as

$$y = f(k)$$
, where $y = \frac{Y}{AL}$ and $k = \frac{K}{AL}$. Show $w = A[f(k) - kf'(k)]$. (6 points)

- (b) Since constant returns to scale imply that the total amount paid to the factors of production equals total net output, show that under constant returns to scale, (7 points) $wL + rK = F(K, AL) - \delta K$.
- (c) Derive what the growth rates of w and r on a balanced growth path are.

(12 points)

系所別:財務金融系

科 目:微積分

Answer the following questions carefully

- 1. Find Taylor's series for $f(x)=\sin x$ at $x=\frac{\pi}{4}$. (10 points)
- 2. Use Maclaurin series to approximate numerical value for $\int_{0}^{0.1} e^{-x^2} dx$. (10 points)
- 3. Let $f(x) = ax^2 + bx + c$ a > 0. Prove that $f(x) \ge 0$ $\forall x \iff b^2 4ac \le 0$. (15 points)
- 4. Evaluate $\lim_{x \to (\frac{\pi}{2})^{-}} (\sec x \tan x)$. (10 points)
- 5. Prove that $\lim_{x\to 0} x \sin \frac{1}{x} = 0$. (15 points)
- 6. Find the derivative of the function $f(x) = \frac{x}{e^x + 1}$ (10 points)
- 7. The plan x + y + z = 12 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Find the highest and lowest points on this ellipse (10 points).
- 8. Use the law of logarithms to solve the equation $e^{x/3} = 4$ (10 points)
- 9. Evaluate the improper integral $\int_0^\infty (x-2)e^{-x^2+4x+3}dx$ if it is convergent (10 points)