

所別:產業精密機械研究所 科目:工程數學 (4)

1. Solve for the following equations.
(a)
$$y' - xe^{x}y^{2} = 0$$
 ($y' = \frac{dy}{dx}$) (10%)
(b) $D^{3}y + 2Dy + y = x^{2} + \sin x + e^{2x}$ ($D = \frac{d}{dx}$) (15%)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 , \quad 0 < x < a, \quad 0 < y < b$$

$$\frac{\partial u}{\partial x}|_{x=0} = 0 , \quad \frac{\partial u}{\partial x}|_{x=a} = 0, \quad 0 < y < b$$

$$u(x,0) = 0 , \quad u(x,b) = f(x), \quad 0 < x < a$$
(b) what if $f(x) = 100$ (5%)

所別:產業精密機械研究所 科目:工程數學(4)

í

3. (20%)

Please find the value of line integral $\int_C (y^2 - 6xy + 6)dx + (2xy - 3x^2)dy$ along the given curve $2^y = x^4$ from point (-1, 0) to point (2, 4)

4. (10%)

A sphere is given by $\ln(x^2+y^2) - z^2 = 0$. Please find the equation of tangent plane at the point $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$.

5. (20%)

Please find a 3x3 symmetric matrix that has eigenvalues $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 5$, and corresponding eigenvectors $\vec{v}_1 = [1, -1, 1]^T$, $\vec{v}_2 = [1, 0, -1]^T$, $\vec{v}_3 = [1, 2, 1]^T$.