1．Solve for the following equations．
（a）$y^{\prime}-x e^{x} y^{2}=0$ $\left(y^{\prime}=\frac{d y}{d x}\right)(10 \%)$
（b）$D^{3} y+2 D y+y=x^{2}+\sin x+e^{2 x} \quad\left(D=\frac{d}{d x}\right)$

2．（a）Solve for the following equation．
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<a, 0<y<b$
$\left.\frac{\partial u}{\partial x}\right|_{x=0}=0,\left.\frac{\partial u}{\partial x}\right|_{x=a}=0,0<y<b$
$u(x, 0)=0 \quad, u(x, b)=f(x), 0<x<a$
（b）what if $f(x)=100$

3．(20%)
Please find the value of line integral $\int_{c}\left(y^{2}-6 x y+6\right) d x+\left(2 x y-3 x^{2}\right) d y$ along the given curve $2^{y}=x^{4}$ from point $(-1,0)$ to point $(2,4)$

4．（ 10% ）
A sphere is given by $\ln \left(x^{2}+y^{2}\right)-z^{2}=0$ ．Please find the equation of tangent plane at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ ．

5．（ 20% ）
Please find a 3×3 symmetric matrix that has eigenvalues $\lambda_{1}=1, \lambda_{2}=3, \lambda_{3}=5$ ， and corresponding eigenvectors $\vec{v}_{1}=[1,-1,1]^{T}, \vec{v}_{2}=[1,0,-1]^{T}, \vec{v}_{3}=[1,2,1]^{T}$ ．

